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In the supplementary materials, we provide details of the
correlation filter, visualization results, and performance on
pseudo mask iteration. In addition, source codes are given in
the ‘source_codes.zip’ file.

A. Details of Correlation Filter

In order to distinguish cells and backgrounds, we utilize
the kernelized correlation filter [2, 4] to generate pseudo
masks of cells in vessel images. According to the cell appear-
ance, we manually select some cells to generate correlation
filter kernels, as shown in Fig.1. As mentioned in [4], the
filter kernel w of each cell template is calculated as follows:
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where x is cell image features extracted by Histogram of
Oriented Gradients (HOG) [3] and Color Name (CN) [7],
x* denotes the complex-conjugate of x, £ = DFT(z) is a
shorthand for the discrete Fourier transform, © is defined as
element-wise product, A is a regularization parameter and
we set it to 0.001, y is a Gaussian shaped regression target.

In order to adapt the different sizes of cells, we resize
the square cell templates to slide lengths 36, 52, 68, 84,
and 100. The HOG and CN features are extracted in 4x
downsample, and their channels are 9 and 11, respectively.
We use the same approach to extract features from input
vessel images and perform the correlation filter with the
cell template kernels. The mean response of the top 3 high
kernels is regarded as the final result. For every template
kernel, the mean response of the top 3 high sizes is the
response of the kernel. Each local maximum in the final
result is treated as the centroid of a cell. Within every circle
with a radius of r centered at the cell centroid, the pixels
whose values are higher than ¢ times the center value are
regarded as the pseudo mask of the cell. The ¢ and r are set
to 0.88 and 25, respectively. Some pseudo mask examples
are shown in Fig.2.
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Figure 1. Examples of cells for generating correlation filter kernels.

Input Pseudo Mask

Figure 2. Examples of cell pseudo masks generated by the correla-
tion filter.

B. Visualization Results

The visualization results of LoopNet and other feature
attribution method mentioned in the main text is shown in
Fig.3. For fair comparison, we only visualize cancerous cell
patches, rather than the pixel-wise results, predicted by ev-
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Figure 3. The visualization results of LoopNet and other feature attribution methods. We only visualize cancerous cell patches predicted by
every approach using green color for a fair comparison, and the cancerous cell centroid annotations labeled by the pathologist are denoted as

orange points in each result image.

ery approach using green color. The cancerous cell centroids
labeled by the pathologist are noted as orange points in
the result images. For CAM [5], we set the target layer to
the last convolution layer of the backbone 3, and the po-
sitions of the class activation map for the MVI category
where the value is greater than 0.5 is marked in green. For
DeepLIFT [6] and LRP [1], every cell-level patch that con-
tains a certain proportion of positive pixel importance scores
is treated as a positive patch and marked in green. The visual-
ization results illustrate that proposed LoopNet can retrieve
most of the cancerous cells and avoid most of the healthy
areas with only image-level category supervision, hence pro-
viding credible evidence of the image classification results.
The other approach can only find a few cancerous cells, and
plenty of these cells are omitted, so it can not be treated as
reliable evidence for clinical diagnosis.

C. Performance on Pseudo Mask Iteration

Like the semi-supervised approach, we can use a trained
LoopNet to generate cell locating pseudo masks of the train-
ing dataset, then use these generated pseudo masks for com-
puting the cell locating loss L;,., training the LoopNet iter-
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Figure 4. The variation of the metrics along cell locating pseudo
mask iterations.

atively. The Fig.4 shows the variation of the metrics along
iterations. The “0” iteration means training the LoopNet with
original pseudo masks generated by correlation filters. The
Precision and Dice increase with the number of iterations,
but the Recall increases first and then decreases. This may
be because, along with iterative training, the LoopNet can
locate cancerous cells more precisely, while some ambigu-
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ous areas that may contain small parts of the cancerous cells
are ignored.
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