
Accelerating Dataset Distillation via Model Augmentation

Lei Zhang1* Jie Zhang1* Bowen Lei2 Subhabrata Mukherjee3

Xiang Pan4 Bo Zhao5 Caiwen Ding6 Yao Li7 Dongkuan Xu8†

1Zhejiang University 2Texas A&M University 3Microsoft Research
4New York University 5Beijing Academy of Artificial Intelligence 6University of Connecticut

7University of North Carolina, Chapel Hill 8North Carolina State University
{zl leizhang, zj zhangjie}@zju.edu.cn dxu27@ncsu.edu

This supplementary material provides more details on
the method and experiments, including a detailed expla-
nation of early-stage models from gradient perspective
(Sec. 1), datasets (Sec. 2), network architectures (Sec. 3),
and additional experiment results (Sec. 4).

Parameter Shape Layer hyper-parameter

pooling.avg [2] stride=2, padding=0
conv1.weight [3, 128, 3, 3] stride=1, padding=1

conv1.bias [128] N/A
conv2.weight [128, 128, 3, 3] stride=1, padding=1

conv2.bias [128] N/A
conv2.weight [128, 128, 3, 3] stride=1, padding=1

conv2.bias [128] N/A
norm.group [128, 128] eps=1e-5, affine=True
norm.group [128, 128] eps=1e-5, affine=True
norm.group [128, 128] eps=1e-5, affine=True
pooling.avg [2] stride=2, padding=0
pooling.avg [2] stride=2, padding=0
pooling.avg [2] stride=2, padding=0
fc.weight [2048, 10] N/A

fc.bias [10] N/A

Table 1. Detailed information of the ConvNet-3 architecture used
in our experiments for CIFAR-10 and CIFAR-100.

1. Why Early-stage Models Work Better
From the gradient perspective, early-stage models can

produce diverse and large-magnitude gradients which are
more effective for gradient matching. Recent studies [2, 3]
demonstrate that gradient dynamically converges to a very
small subspace after a short period of training. The models
and synthetic data will be alternatively updated after sam-
pling the model in the dataset distillation process. Thus,
successive gradients will be used for updating synthetic
data. Training with small and similar successive gradients
produced by well-trained models will result in worse syn-
thetic data. This is consistent with the finding in the previ-

ous work, DSA [8], in which utilizes data augmentation to
enlarge the gradient magnitude for better gradient matching.

Parameter Shape Layer hyper-parameter

conv1.weight [3, 64, 7, 7] stride=1, padding=3
pool1.avg [4, 4] stride=4, padding=0

conv2.weight [64, 64, 3, 3] stride=1, padding=1
norm1.group [64, 64] eps=1e-5, affine=True
conv2.weight [64, 64, 3, 3] stride=1, padding=1
norm1.group [64, 64] eps=1e-5, affine=True
conv3.weight [64, 128, 3, 3] stride=1, padding=1
norm2.group [128, 128] eps=1e-5, affine=True
conv4.weight [128, 128, 3, 3] stride=1, padding=1
norm2.group [128, 128] eps=1e-5, affine=True
conv5.weight [64, 128, 1, 1] stride=1, padding=0

pool2.avg [2, 2] stride=2, padding=0
norm2.group [128, 128] eps=1e-5, affine=True
conv6.weight [128, 256, 3, 3] stride=1, padding=1
norm3.group [256, 256] eps=1e-5, affine=True
conv7.weight [256, 256, 1, 1] stride=1, padding=1
norm3.group [256, 256] eps=1e-5, affine=True
conv8.weight [128, 256, 1, 1] stride=1, padding=0

pool2.avg [2, 2] stride=2, padding=0
norm3.group [256, 256] eps=1e-5, affine=True
conv9.weight [256, 512, 3, 3] stride=1, padding=1
norm4.group [512, 512] eps=1e-5, affine=True

conv10.weight [512, 512, 3, 3] stride=1, padding=1
norm4.group [512, 512] eps=1e-5, affine=True

conv11.weight [256, 512, 1, 1] stride=1, padding=1
pool2.avg [2, 2] stride=2, padding=0

norm4.group [512, 512] eps=1e-5, affine=True
pool5.avg [7, 7] stride=7, padding=0
fc.weight [512, 10] N/A

fc.bias [10] N/A

Table 2. Detailed information of the ResNetAP-10 architecture
used in our experiments for ImageNet.

1



Img/
Cls

CIFAR-10
DM DSA CAFE TM IDC1 IDC5 Ours5 IDC10 Ours10 IDC20 Ours20

1 26.0 28.2 30.3 46.3 50.6 49.5 (0.4) 49.2 (0.4) 49.0 (0.3) 48.7 (0.5) 48.6 (0.3) 48.0 (0.3)
10 48.9 52.1 46.3 65.3 67.5 66.2 (0.3) 67.1 (0.2) 65.0 (0.3) 66.5 (0.1) 63.7 (0.2) 65.1 (0.1)
50 63.0 60.6 55.5 71.6 74.5 73.3 (0.3) 73.8 (0.1) 72.0 (0.6) 73.1 (0.1) 71.1 (0.2) 71.7 (0.3)

(a) Results on CIFAR-10

Img/
Cls

CIFAR-100
DM DSA CAFE TM IDC1 IDC5 Ours5 IDC10 Ours10 IDC20 Ours20

1 11.4 13.9 12.9 24.3 25.1 24.9 (0.5) 29.8 (0.2) 24.7 (0.1) 29.6 (0.1) 24.4 (0.1) 29.1 (0.1)
10 29.7 32.3 27.8 40.1 45.1 44.1 (0.2) 46.2 (0.3) 43.1 (0.2) 45.6 (0.4) 41.6 (0.2) 45.0 (0.0)
50 43.6 42.8 37.9 47.7 - - 52.6 (0.4) - 52.3 (0.2) - 52.2 (0.1)

(b) Results on CIFAR-100

Table 3. Comparing performance of dataset distillation methods on CIFAR-10 and CIFAR-100. We report Top-1 test accuracy of test
models ConvNet-3 trained on condensed datasets. Img/Cls means the number of images per class of the condensed dataset. We evaluate
each task with 3 repetitions and denote the standard deviations in the parenthesis. We compare the same acceleration levels between IDC
and our method on 5×, 10×, and 20×.

Dataset Img/Cls DM DSA IDC1 IDC5 Ours5 IDC10 Ours10

ImageNet-10 10 52.3 52.7 72.8 (0.6) 72.3 (0.7) 74.6 (0.4) 72.3 (1.0) 74.0 (0.4)
20 59.3 57.4 76.6 (0.4) 74.7 (0.4) 76.3 (1.0) 74.7 (0.4) 75.2 (1.0)

ImageNet-100 10 22.3 21.8 46.7 (0.2) - 48.4 (0.3) - -
20 30.4 30.7 53.7 (0.9) - 56.0 (0.5) - -

Table 4. Comparing performance of dataset distillation methods on ImageNet-10 and ImageNet-100. We report Top-1 test accuracy of test
models ResNetAP-10 trained on condensed datasets. We evaluate each task with 3 repetitions and denote the standard deviations in the
parenthesis.

2. Datasets

ImageNet-subset. Following previous works [5, 7], we
evaluate our method on ImageNet-subset, which borrows
a subclass list containing 100 classes from [7]. We use the
first 10 classes from the list in our ImageNet-10 experiments
and the complete list in our ImageNet-100 experiment. The
images in ImageNet-subset are preprocessed to a fixed size
of 224 × 224 using resize and center crop functions.

3. Networks

Staying with precdent [1, 5, 8, 10], we employ a sim-
ple ConvNet-3 architecture for CIFAR-10 and CIFAR-
100 [6] dataset and a modified ResNet-10 [4] architecture
ResNetAP-10 for ImageNet-subset. As shown in Tab. 1,
ConvNet-3 consists of several convolutional tasks, each
containing a 3 × 3 convolutional layer with 129 filters,
Instance normalization, RELU and 2 ×2 average pooling
with stride 2. We also demonstrate the detailed architecture
of ResNetAP-10 in Tab. 2. ResNetAP-10 is modified on
ResNet-10, which replaces strided convolution as average
pooling for downsampling.

4. Additional Experiments

4.1. More Experiment results on Datasets

CIFAR-10 & CIFAR-100. Our method achieves a better
trade-off in task performance vs. acceleration of training
compared to other state-of-the-art baselines on CIFAR-10
and CIFAR-100. As shown in Tab. 3, our method consis-
tently outperforms SOTA method IDC under 5×, 10×, and
20× speed-ups and other baselines without acceleration.
This verifies the efficiency of our method, which requires
less training time and computation resources to achieve
comparable or surpass performances of leading baselines.
ImageNet. Apart from CIFAR-10 and CIFAR-100, we
evaluate the performance of our method on large-scale and
high-resolution dataset ImageNet. As shown in Tab. 4, our
method significantly outperforms all the baselines across
various numbers number of classes and surpasses the lead-
ing method IDC under 5× and 10× speed-ups. Existing
methods perform poorly on the high-resolution datasets,
such as ImageNet. However, our method not only achieves
a better performance but also improves the efficiency on
both low- and high-resolution datasets. This demonstrates

2



0 100 200 300 400
Training Steps

30

40

50

Te
st

in
g 

A
cc

ur
ac

y 
(%

)

Ours
IDC

(a) CIFAR-10 (Img/Cls=1).

0 100 200 300 400
Training Steps

16

20

24

28

(b) CIFAR-100 (Img/Cls=1)

0 20 40 60 80 100
Training Steps

40

45

50

55

60

(c) ImageNet-10 (Img/Cls=1)

0 20 40 60 80 100
Training Steps

68

72

76

(d) ImageNet-10 (Img/Cls=20)

Figure 1. Performance comparison across varying training steps. The batch size is set the same as 64. Our method consistently outperforms
the leading method IDC [5] on various training steps.

0 1 2 3 4 5 6
Training time (h)

66

69

72

Te
st

 A
cc

ur
ac

y.
(%

)

IDC
Ours

(a) CIFAR-10 (Img/Cls=50).

0 5 10 15 20 25
Training time (h)

32

36

40

44

(b) CIFAR-100 (Img/Cls=10)

0 2 4 6
Training time (h)

40

45

50

55

60

(c) ImageNet-10 (Img/Cls=1)

0 4 8 12
Training time (h)

66

69

72

75

(d) ImageNet-10 (Img/Cls=10)

Figure 2. Performance comparison across varying training time. Our method significantly requires less time and achieves better perfor-
mance. The result reported by our method is 5 × acceleration.

0 10 20 30 40
FLOPs (T)

52

56

60

64

68

Te
st

 A
cc

ur
ac

y.
(%

)

IDC
Ours

(a) CIFAR-10 (Img/Cls=10).

0 10 20 30 40
FLOPs (T)

64

68

72

(b) CIFAR-10 (Img/Cls=50)

0 10 20 30 40
FLOPs (T)

16

20

24

28

(c) CIFAR-100 (Img/Cls=1)

0 50 100 150 200
FLOPs (T)

40

45

50

55

60

(d) ImageNet-10 (Img/Cls=1)

Figure 3. Performance comparison across varying FLOPs. Our method significantly requires less computation resource and achieves better
performance. The result reported of our method is 5 × acceleration.

the effectiveness and scalability of our method and makes it
more appealing from all practical purposes.

4.2. Comparison on Training Budgets

We further investigate the efficiency of our method by
considering various amounts of training budgets. We con-
sider training budgets from two perspectives, time effi-
ciency, including training steps and training times as shown
in Fig. 1 and Fig. 2, and computation efficiency, includ-
ing FLOPs as shown in Fig. 3. We remark that our method
provides significantly better performance than the leading
method IDC across all ranges of budgets. Our method re-
quires fewer training steps, consumes shorter training time,
and fewer computation resources to reach comparable or
better performance, which demonstrates the efficiency of

our method.

Method Acc.(%) / Time(h) Speed Up Acc. Gain

DC 26.0 / 1.38
4.95× 1.11×DC + Ours 28.9 / 0.27

DM 48.9 / 0.26
4.92× 1.02×DM + Ours 49.5 / 0.05

IDC 67.5 / 22.2
4.90× 0.99×IDC + Ours 67.1 / 4.45

Table 5. Applying our method to different dataset distillation methods on
CIFAR-10 (10 images per class).

3



4.3. Our method with Other Algorithms

Our weight perturbation strategy can be orthogonally ap-
plied to other dataset distillation methods. To verify the
generality of our strategy, we apply the weight perturba-
tion on other DD methods, gradient-matching DC [10] and
distribution-matching DM [9] to accelerate the training 5×
faster. Tab. 5 summarizes the test performance of condensed
data on CIFAR-10. The table shows that our method can
also improve the performance of DC and DM.

4.4. Model Selection Effect on Distillation

We conduct an ablation study investigating the effect of
model selection in Tab. 6. Instead of randomly selecting
a model from pre-trained models, we consider to average
the weights of all the pre-trained models at the beginning of
each outer loop in our method. The table shows that the gap
between random selection and weight average is no more
than 1% in most of datasets. It indicates that both meth-
ods preserve the relevant information of feature spaces and
verifies that our method does not mainly rely on the way of
model selection.

Dataset Img/Cls
Random
Selection

Weight
Average

CIFAR-10 1 49.2 (0.4) 48.7 (0.4)
10 67.1 (0.2) 66.1 (0.2)

CIFAR-100 1 29.8 (0.2) 28.5 (0.1)
10 46.2 (0.3) 43.6 (0.4)

ImageNet-10 1 60.5 (0.2) 59.7 (1.2)
10 74.6 (0.3) 74.8 (0.4)

Table 6. Comparing performance of dataset distillation on differ-
ent methods of method selection. The results are reported under
5× acceleration with an identical training strategy.

4.5. Visual Examples

We provide visual examples of our method on CIFAR-
10, ImageNet under 5× acceleration in the following pages.
In Fig. 4 and Fig. 5, we compare our synthetic data samples
to the real training data samples, which we used as initial-
ization of the synthetic data. From the figure, we remark
that our condensed data looks abstract, yet still recogniz-
able, representative of each class. We also provide the full
condensed data in Fig. 6 and Fig. 7, under the storage of
10 images per class.

References
[1] George Cazenavette, Tongzhou Wang, Antonio Torralba,

Alexei A. Efros, and Jun-Yan Zhu. Wearable imagenet: Syn-
thesizing tileable textures via dataset distillation. In CVPR
Workshops, pages 2277–2281, 2022. 2

[2] Jonathan Frankle, David J. Schwab, and Ari S. Morcos. The
early phase of neural network training. In ICLR, 2020. 1

[3] Guy Gur-Ari, Daniel A. Roberts, and Ethan Dyer. Gradient
descent happens in a tiny subspace. CoRR, abs/1812.04754,
2018. 1

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
pages 770–778, 2016. 2

[5] Jang-Hyun Kim, Jinuk Kim, Seong Joon Oh, Sangdoo
Yun, Hwanjun Song, Joonhyun Jeong, Jung-Woo Ha, and
Hyun Oh Song. Dataset condensation via efficient synthetic-
data parameterization. In ICML, volume 162, pages 11102–
11118, 2022. 2, 3

[6] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 2

[7] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Con-
trastive multiview coding. In ECCV, volume 12356, pages
776–794, 2020. 2

[8] Bo Zhao and Hakan Bilen. Dataset condensation with differ-
entiable siamese augmentation. In ICML, volume 139, pages
12674–12685, 2021. 1, 2

[9] Bo Zhao and Hakan Bilen. Dataset condensation with distri-
bution matching. In WACV, pages 6503–6512, 2023. 4

[10] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset
condensation with gradient matching. In ICLR, 2021. 2, 4

4



Real

Synthetic

Figure 4. Comparison of real and synthetic images on CIFAR-10.

Real

Synthetic

Real

Synthetic

Figure 5. Comparison of real and synthetic images on ImageNet.

5



Figure 6. Condensed images of CIFAR-10 dataset 10 Img/Cls. Each row corresponds to the condensed class of a single class.

Figure 7. Condensed images of ImageNet-10 dataset 10 Img/Cls.

6


