
A. More Experimental Settings
A.1. Datasets and Classifiers

The datasets and DNN models used in our experiments
are summarized in Table 4.

A.2. Details of Baseline Implementations

We implemented the baselines including FP1, MCR2,
NAD3 ABL4, and DBD 5 with their open-sourced codes.
For Fine-pruning (FP), we pruned the last convolutional
layer of the model. For model connectivity repair (MCR),
we trained the loss curve for 100 epochs using the back-
doored model as an endpoint and evaluated the defense per-
formance of the model on the loss curve. As for the Neural
Attention Distillation (NAD), we finetuned the backdoored
student network for 10 epochs with 5% of clean data. The
distillation parameter for CIFAR-10 was set to be identical
to the value given in the original paper. We cautiously se-
lected the value of distillation parameter for GTSRB and
ImageNet to achieve the best trade-off between ASR and
CA. For ABL, we unlearned the backdoored model using
the LGGA loss with 1% isolated backdoor examples and a
learning rate of 0.0001. For our DBD, we adopt SimCLR
as the self-supervised method and MixMatch as the semi-
supervised method. The filtering rate is set to 50% as sug-
gested by the original paper.

A.3. Details of CBD Implementations

In CBD, fC is trained on poisoned datasets for 100
epochs using Stochastic Gradient Descent (SGD) with an
initial learning rate of 0.1 on CIFAR-10 and the ImageNet
subset (0.01 on GTSRB), a weight decay of 0.0001, and a
momentum of 0.9. The learning rate is divided by 10 at the
20th and the 70th epoch. Dϕ is set as a MLP with 2 layers.
The dimensions of the embedding r and z are set as 64.

B. More Experimental Results

B.1. Results of Adaptive Attacks

The pseudo codes of adaptive attacks against CBD are
shown in Algorithm 2. The results of adaptive attacks with
different kinds of backdoor are shown in Table 5. We also
show the curves of training losses on clean/backdoor ex-
amples in the optimization of added noise along with the
vanilla training for reference. In Figure 4, we can observe
that the training losses of backdoor examples reaches al-
most zero after several epochs of training (first line) while

1https://github.com/kangliucn/Fine-pruning-defense
2https://github.com/IBM/model-sanitization
3https://github.com/bboylyg/NAD
4https://github.com/bboylyg/ABL
5https://github.com/SCLBD/DBD

Algorithm 2 Adaptive Attack to CBD
Input: Model fθ, poisoned datasetD′, clean datasetD, per-
turbation range ϵ, number of training iterations T , step size
α, update steps M .
Output: optimized poisoned dataset D′

1: Initialize fθ
2: for t = 1, · · · , T do
3: Draw a mini-batch B = {(x(i), y(i))}ni=1 from D ∪

D′

4: θ ← θ − η∇θ

∑
(x,y)∈B L(fθ(x), y)

5: for (xi, yi) in D′ do
6: for m = 1, · · · ,M do
7: xi ← Πϵ(xi + α · ∇xL(fθ(xi), yi))
8: end for
9: end for

10: end for

our adaptive attack strategy managed to increase the losses
of backdoor examples in the optimization process (second
line). The above observation indicates that the backdoor
examples are much easier to learn than clean examples in
vanilla training. The adaptive attack can slow the injection
of backdoor and try to make the backdoor attack stealth-
ier to bypass CBD. However, our CBD can still defend the
adaptive attack successfully (Table 5). The reason is most
probably that the optimized noise becomes less effective
when the model is retrained and the model parameters are
randomly initialized. In another word, the optimized noise
is not transferable.

0 5 10 15 20 25 30
Epochs

0.0

0.5

1.0

1.5

2.0

Te
st

 L
os

s

Clean Examples
Backdoor Examples

(a) BadNets

0 5 10 15 20 25 30
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

Te
st

 L
os

s

Clean Examples
Backdoor Examples

(b) Trojan

0 5 10 15 20 25 30
Epochs

0.0

0.5

1.0

1.5

Te
st

 L
os

s

Clean Examples
Backdoor Examples

(c) Blend

0 5 10 15 20 25 30
Epochs

0.0

0.5

1.0

1.5

Te
st

 L
os

s

Clean Examples
Backdoor Examples

(d) WaNet

2 4 6 8 10
Epochs

0.6

0.8

1.0

1.2

1.4

1.6

Tr
ai

ni
ng

 L
os

s

Clean Examples
Backdoor Examples

(e) BadNets

2 4 6 8 10
Epochs

0.6

0.8

1.0

1.2

1.4

1.6

Tr
ai

ni
ng

 L
os

s

Clean Examples
Backdoor Examples

(f) Trojan

2 4 6 8 10
Epochs

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Tr
ai

ni
ng

 L
os

s

Clean Examples
Backdoor Examples

(g) Blend

2 4 6 8 10
Epochs

0.5

1.0

1.5

2.0

Tr
ai

ni
ng

 L
os

s

Clean Examples
Backdoor Examples

(h) WaNet

Figure 4. The curve of training losses on clean/backdoor exam-
ples in the vanilla training (first line) and in the optimization of
adaptive attacks (second line). This experiment is conducted with
WideResNet-16-1 for CIFAR-10 under poisoning rate 10%.

B.2. Results with Different Model Architectures

Note that our CBD is agnostic to the choice of model
architectures. In the main text, we report the results
with WideResNet-16-1 and ResNet-34. Here, in Table 6
and 7, we show experimental results on CIFAR-10 with
WideResNet-40-1 [69] and th T2T-ViT [40] under poison-
ing rate 10%. We can observe that CBD can still greatly

12

Table 4. Details of datasets and classifiers in the paper

Dataset Labels Input Size Training Images Classifier

CIFAR-10 10 32 x 32 x 3 50000 WideResNet-16-1
GTSRB 43 32 x 32 x 3 39252 WideResNet-16-1

ImageNet subset 12 224 x 224 x 3 12406 ResNet-34

Table 5. Attack success rate (ASR %) and clean accuracy (CA %)
of Adaptive Attacks.

Defense
BadNets Trojan Blend WaNet

ASR CA ASR CA ASR CA ASR CA

None 99.62 84.55 99.85 84.32 97.63 84.45 97.24 85.47

CBD 4.31 84.19 3.77 84.37 2.57 84.49 5.19 85.33

reduce the attack success rate and keep clean accuracy with
different model architectures.

Table 6. Results on CIFAR10 with WideResNet-40-1. We show
attack success rates (ASR %) and clean accuracy (CA %).

Defense
BadNets Trojan Blend WaNet

ASR CA ASR CA ASR CA ASR CA

None 100 92.96 100 93.21 99.83 92.69 98.35 92.88

CBD 0.95 92.54 1.04 92.70 1.32 92.17 2.54 92.26

Table 7. Results on CIFAR10 with T2T-ViT. We show the attack
success rates (ASR %) and the clean accuracy (CA %).

Defense
BadNets Trojan Blend WaNet

ASR CA ASR CA ASR CA ASR CA

None 100 85.65 100 85.86 99.42 85.66 99.30 86.27

CBD 0.89 86.05 0.97 86.61 1.59 85.82 3.80 85.94

B.3. The computational time of other defenses.

Table. 8 shows the total computational time of defense
methods against BadNets. As the methods belong to differ-
ent categories, we count the time to train backdoored mod-
els for FP, MCR, and NAD for a fair comparison. Generally,
the time cost of CBD is acceptable.

Table 8. The total computational time (seconds) on CIFAR10 with
WRN-16-1. The percentages in parentheses indicate the relative
increase compared to no defence (None).
None FP MCR NAD ABL DBD CBD (ours)

1152 1515(31.5%) 3445(127.4%) 1306(13.4%) 1383(20.0%) 5280(358.3%) 1317(14.3%)

C. Details of Derivations
Here we show the details of derivation with respect to

Equ. 4. Since the p(z|x) = N (µ(x),diag{σ2(x)}) and

p(x) = N (0, 1) are multivariate Gaussian distributions
with independent components, we only need to derive the
case with univariate Gaussian distributions. For the univari-
ate case, we have:

DKL(N (µ, σ2)||N (0, 1))

=

∫
1√
2πσ2

e−(x−µ)2/2σ2

(
log

e−(x−µ)2/2σ2

/
√
2πσ2

e−x2/2/
√
2π

)
dx

=

∫
1√
2πσ2

e−(x−µ)2/2σ2

log

{
1

σ
exp

{
1

2
[x2 − (x− µ)2/σ2]

}}
dx

=
1

2

∫
1√
2πσ2

e−(x−µ)2/2σ2

[−logσ2 + x2 − (x− µ)2/σ2]dx

=
1

2
(−logσ2 + µ2 + σ2 − 1).

(11)
The final equation of Equ. 11 holds because −logσ2 is a
constant; the term x2 is the second order moment of the
Gaussian distribution and equals to µ2+σ2 after integration;
the (x − µ)2 in the third term calculates the variance and
equals to σ2 after integration (−σ2

σ2 = −1). For the results
of multivariate Gaussian distributions, we have:

DKL(p(z|x)||q(z))
= DKL(N (µ(x),diag{σ2(x)})||N (0, 1))

=
1

2

∑
d

(−logσ2
d + µ2

d + σ2
d − 1)

=
1

2
||µ(x)||22 +

1

2

∑
d

(σ2
d − logσ2

d − 1).

(12)

Therefore, Equ. 4 in the main text has been proved.

13

