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The appendix is structured as follows:

§A provides the pseudo code of our correspondence

matching based training strategy.

e §B offers analysis regarding the object-level matching
process.

e §C presents the comparison of loss curve.

e §D gives visualization of correspondence matching.

e SE shows additional qualitative results comparing pro-
posed methods to baselines and recent state-of-the-arts
on DAVIS2017;cs: [6] and YouTube-VOS2019,,; [7]
dataset.

e &F supplements more implementation details of training.

e §G broadly discusses the limitation of our approach and

outlines a few directions of future work.

A. Pseudocode

The pseudo-code of the pixel-level and object-level cor-
respondence learning is given in Algorithm S1 and S2 re-
spectively.

B. Object-level Matching Accuracy

Since matching accuracy is a critical factor for object-
level correspondence learning, we measure the object-level
matching process qualitatively. Two visual cases are shown
in Fig. S1. The performance sufficiently demonstrates ro-
bustness of object-level matching, thus ensuring the efficacy
of object-level representative learning.

C. Loss Curve Analysis

We plot loss curves of Lsgg, LocL and Lpcr (Eq. 12) of
STCN+Ours and the original segmentation loss of STCN.
Note that the fluctuation of the segmentation loss is caused
by the gradually enlarged frame interval — the trend of
our segmentation loss is similar to that of STCN, while our
segmentation loss is lower. This confirms the efficacy of pro-
posed correspondence-aware training strategy.
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Figure S2. Loss curve comparison of STCN+Ours and STCN.

D. Visualization of Correspondence Matching

Fig. S3 shows matching response between distant
frames I; and I, in DAVIS2017 [6]. As seen, baseline
model STCN [2] often suffers from mismatching when
appearance-similar objects present. However, after our
correspondence-aware training, the VOS model is able to
build more precise and robust cross-frame correspondence.
These results intuitively verify the effectiveness of our
correspondence-aware training strategy.

E. Additional Qualitative Results

We show additional VOS results on two datasets, namely
YouTube-VOS2019,,; [7] and DAVIS2017;.s [6] in
Fig. S4-S7. As can be seen, our space-time correspondence-
aware training paradigm indeed boosts the segmentation
performance of STCN [2] and XMem [1], even in chal-
lenging scenarios. We also provide visual comparisons
with recent state-of-the-art methods, i.e., AOT[&], RDE[4],
PCVOS [5], in Fig. S8-S9. As seen, our algorithm consis-
tently yields more precise segmentation results compared
with these powerful competitors. Notably, our approach
is more favored in distinguishing between appearance-
similar objects. We attribute this to the effect of our
correspondence-aware training scheme.



F. More Implementation Detail

During training, we use a batch size of 16 and an image
crop size of 384 x 384. All backbones are initialized us-
ing corresponding weights pre-trained on ImageNet-1K[3],
while remaining layers are randomly initialized. The ini-
tial learning rate is set to 5e-5 and scheduled according to a
“step” policy.

G. Discussion

Limitation. Currently, we only demonstrate the criti-
cal role of space-time correspondence learning in train-
ing matching-based VOS solutions. It is unclear whether
our algorithm can contribute to other VOS algorithms.
We believe it is highly necessary to deeply embed space-
time correspondence learning into both network architec-
ture design and training scheme of VOS models, as cor-
respondence matching addresses the dense-tracking nature
of VOS. Moreover, our current correspondence-aware VOS
training algorithm can evolve with the advance of the field
of unsupervised correspondence matching. In our practice,
we find that our model sometimes struggles in handling fast-
moving objects.

Broader Impact. This work can benefit the wide applica-
tion scenarios of VOS, such as video editing, intelligent
conferencing, and augmented reality.

Future Work. The aforementioned limitations demonstrate
the directions of our future work. Moreover, it is also inter-
esting to explore the extra use of massive unlabeled video
data within our framework, since our correspondence-
matching learning operates without annotations.



Algorithm S1 Pseudo-code for pixel-level consistency in a
PyTorch-like style.

Algorithm S2 Pseudo-code for object-level coherence in a
PyTorch-like style.

# k_tl, k_t2: representation of two successive frames
# k_r: representation of the remote frame
# R: radius of the sampling grid
def grid sample(key, R):
h, w=H// R, W// R
%x_idx = arange(0, W, R).view(l, 1, w)
y_idx = arange(0, H, R).view(l, h, 1)

# random offsets
x_1dx x_idx 4 randint (0, R, (B, 1, 1))
y_idx y_idx + randint (0, R, (B, 1, 1))

# B X w X h

xy_idx = x_idx + y_idx * W

# B X wh X C

xy_idx = xy_idx.view(B,-1,1).expand(-1,-1,C)

# BHW X C — B X HW X C

key = key.reshape(B, HW, C)

# Bhw X C

key = (gather (key,dim=1, index=xy_idx) .flatten(0,1)

return key
def pixel level consistency(k_tl, k_t2, k_r, R=8):

# BHW X C — Bhw X C
k_r = grid sample(k_r, radius=R)

#======== estimate the affinity (Eq.5) ========#
# BHW X Bhw
A_tl_r softmax(k_tl * k_r.transpose(), dim=1)

A_t2_r softmax(k_t2 * k_r.transpose(), dim=1l)
#======== generate pseudo label (Eq.6) ========#
# BHW, 1

pseudo = argmax(A_tl_r, dim=1)

#==== pixel-level consistency loss (Eq.7) =====#
1l pc = nll loss(A_t2_r, pseudo)

return 1_pc

res4_p, res4_qg: features of two distant frames
box_p, box_g: bounding boxes of objects

D: dimension of object-level representation

N: number of objects drawn from P

PROJ: project head to map object representations
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def object level coherence(resd4_p, resd_g, box_p,

box_g, N):
#===== object-level representation (Eg.8) =====#
#B X C X HXW —B XNp XDXh Xw
o_p = PROJ(roi align(res4_p, box_p))
# B X Np X DX hXw— B X N_p X D
o_p = avg pool(o_p, kernel_size=(h, w)).squeeze()
#B X C X HXW—=B X N.gXDXh Xw
o_gq = PROJ(roi align(res4_qg, box_qg))
# B X Ng X D X h X w — B X N._g XD
o_g = avg pool(o_qg, kernel_size=(h, w)).squeeze()

# randomly drawn subset

idx_p = randint (N)

# B X Np XD —- B X N X D

o_p = index select(o_p, dim=1, index=idx_p)

========= pipartite matching (Eq.9) ==========#

X N_g

hungarian matcher (o_p, o_q)
counterpart alignment (Eqg.10)

indices = argmax(A_p_g, dim=-1)

# indices after flatten the batch

indices = [indice + b_idx * indices.size(0) for
b_idx, indice in enumerate (indices)]

indices = stack(indices, dim=0).flatten(0, 1)

# cross batch affinity for more negative samples
affinity = softmax(o_p.flatten(0,1) * o_qg.
flatten(0, 1) .transpose(), dim=1)

#==== object-level coherence loss (Eq.ll) =====#
l_oc = nll loss(affinity, indices)

return 1_oc
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Figure S3. Correspondence matching results for STCN+Ours and STCN [2] on DAVIS2017 [6] dataset, where the query pixel and
the matching response in another distant frame are highlighted.
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Figure S4. More qualitative comparisons between STCN+Ours and STCN[2] on YouTube-VOS2019,,:[7] and DAVIS2017 ;s [0].
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Figure S5. More qualitative comparisons between STCN+Ours and STCN|[2] on YouTube-VOS2019,4: [7].
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Figure S6. More qualitative comparisons between XMem+Ours and XMem[ 1] on YouTube-VOS2019,4:[7].
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Figure S7. More qualitative comparisons between XMem+Ours and XMem[ | ] on YouTube-VOS2019,,4;[7] and DAVIS2017,4: [6].
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Figure S8. More qualitative comparisons between XMem+Ours and AOT [8], RDE[4], PCVOS[5] on YouTube-VOS2019,4:[7].
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Figure S9. More qualitative comparisons between XMem+Ours and AOT[8], RDE[4], PCVOS[5] on YouTube-VOS2019,4:[7].
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