
Boosting Video Object Segmentation via Space-time Correspondence Learning
Supplemental Material

Yurong Zhang1∗, Liulei Li2∗, Wenguan Wang2†, Rong Xie1, Li Song1, Wenjun Zhang1

1School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University 2ReLER, CCAI, Zhejiang University

https://github.com/wenguanwang/VOS_Correspondence

The appendix is structured as follows:

• §A provides the pseudo code of our correspondence
matching based training strategy.

• §B offers analysis regarding the object-level matching
process.

• §C presents the comparison of loss curve.
• §D gives visualization of correspondence matching.
• §E shows additional qualitative results comparing pro-

posed methods to baselines and recent state-of-the-arts
on DAVIS2017test [6] and YouTube-VOS2019val [7]
dataset.

• §F supplements more implementation details of training.
• §G broadly discusses the limitation of our approach and

outlines a few directions of future work.

A. Pseudocode
The pseudo-code of the pixel-level and object-level cor-

respondence learning is given in Algorithm S1 and S2 re-
spectively.

B. Object-level Matching Accuracy
Since matching accuracy is a critical factor for object-

level correspondence learning, we measure the object-level
matching process qualitatively. Two visual cases are shown
in Fig. S1. The performance sufficiently demonstrates ro-
bustness of object-level matching, thus ensuring the efficacy
of object-level representative learning.

C. Loss Curve Analysis
We plot loss curves of LSEG, LOCL and LPCL (Eq. 12) of

STCN+Ours and the original segmentation loss of STCN.
Note that the fluctuation of the segmentation loss is caused
by the gradually enlarged frame interval — the trend of
our segmentation loss is similar to that of STCN, while our
segmentation loss is lower. This confirms the efficacy of pro-
posed correspondence-aware training strategy.

1The first two authors contribute equally to this work.
2Corresponding author.

Figure S1. Qualitative results of object-level matching perfor-
mance on DAVIS2017 [6] and YouTube-VOS2019val [7].

0 30000 60000 90000 120000 150000

LSEG

LPCL

LOCL

STCN

Figure S2. Loss curve comparison of STCN+Ours and STCN.

D. Visualization of Correspondence Matching

Fig. S3 shows matching response between distant
frames It and Iτ in DAVIS2017 [6]. As seen, baseline
model STCN [2] often suffers from mismatching when
appearance-similar objects present. However, after our
correspondence-aware training, the VOS model is able to
build more precise and robust cross-frame correspondence.
These results intuitively verify the effectiveness of our
correspondence-aware training strategy.

E. Additional Qualitative Results

We show additional VOS results on two datasets, namely
YouTube-VOS2019val [7] and DAVIS2017test [6] in
Fig. S4-S7. As can be seen, our space-time correspondence-
aware training paradigm indeed boosts the segmentation
performance of STCN [2] and XMem [1], even in chal-
lenging scenarios. We also provide visual comparisons
with recent state-of-the-art methods, i.e., AOT[8], RDE[4],
PCVOS [5], in Fig. S8-S9. As seen, our algorithm consis-
tently yields more precise segmentation results compared
with these powerful competitors. Notably, our approach
is more favored in distinguishing between appearance-
similar objects. We attribute this to the effect of our
correspondence-aware training scheme.

1

F. More Implementation Detail
During training, we use a batch size of 16 and an image

crop size of 384 × 384. All backbones are initialized us-
ing corresponding weights pre-trained on ImageNet-1K[3],
while remaining layers are randomly initialized. The ini-
tial learning rate is set to 5e-5 and scheduled according to a
“step” policy.

G. Discussion
Limitation. Currently, we only demonstrate the criti-
cal role of space-time correspondence learning in train-
ing matching-based VOS solutions. It is unclear whether
our algorithm can contribute to other VOS algorithms.
We believe it is highly necessary to deeply embed space-
time correspondence learning into both network architec-
ture design and training scheme of VOS models, as cor-
respondence matching addresses the dense-tracking nature
of VOS. Moreover, our current correspondence-aware VOS
training algorithm can evolve with the advance of the field
of unsupervised correspondence matching. In our practice,
we find that our model sometimes struggles in handling fast-
moving objects.
Broader Impact. This work can benefit the wide applica-
tion scenarios of VOS, such as video editing, intelligent
conferencing, and augmented reality.
Future Work. The aforementioned limitations demonstrate
the directions of our future work. Moreover, it is also inter-
esting to explore the extra use of massive unlabeled video
data within our framework, since our correspondence-
matching learning operates without annotations.

Algorithm S1 Pseudo-code for pixel-level consistency in a
PyTorch-like style.

k_t1, k_t2: representation of two successive frames
k_r: representation of the remote frame
R: radius of the sampling grid

def grid sample(key, R):
h, w = H // R, W // R
x_idx = arange(0, W, R).view(1, 1, w)
y_idx = arange(0, H, R).view(1, h, 1)

random offsets
x_idx = x_idx + randint(0, R, (B, 1, 1))
y_idx = y_idx + randint(0, R, (B, 1, 1))

B × w × h
xy_idx = x_idx + y_idx * W
B × wh × C
xy_idx = xy_idx.view(B,-1,1).expand(-1,-1,C)

BHW × C → B × HW × C
key = key.reshape(B, HW, C)
Bhw × C
key = (gather(key,dim=1,index=xy_idx).flatten(0,1)

return key

def pixel level consistency(k_t1, k_t2, k_r, R=8):
BHW × C → Bhw × C
k_r = grid sample(k_r, radius=R)

#======== estimate the affinity (Eq.5) ========#
BHW × Bhw
A_t1_r = softmax(k_t1 * k_r.transpose(), dim=1)
A_t2_r = softmax(k_t2 * k_r.transpose(), dim=1)

#======== generate pseudo label (Eq.6) ========#
BHW, 1
pseudo = argmax(A_t1_r, dim=1)

#==== pixel-level consistency loss (Eq.7) =====#
l_pc = nll loss(A_t2_r, pseudo)

return l_pc

Algorithm S2 Pseudo-code for object-level coherence in a
PyTorch-like style.

res4_p, res4_q: features of two distant frames
box_p, box_q: bounding boxes of objects
D: dimension of object-level representation
N: number of objects drawn from P
PROJ: project head to map object representations

def object level coherence(res4_p, res4_q, box_p,
box_q, N):

#===== object-level representation (Eq.8) =====#
B × C × H × W → B × N_p × D × h × w
o_p = PROJ(roi align(res4_p, box_p))
B × N_p × D × h × w → B × N_p × D
o_p = avg pool(o_p, kernel_size=(h, w)).squeeze()
B × C × H × W → B × N_q × D × h × w
o_q = PROJ(roi align(res4_q, box_q))
B × N_q × D × h × w → B × N_q × D
o_q = avg pool(o_q, kernel_size=(h, w)).squeeze()

randomly drawn subset
idx_p = randint(N)
B × N_p × D → B × N × D
o_p = index select(o_p, dim=1, index=idx_p)

#========= bipartite matching (Eq.9) ==========#
B × N × N_q
A_p_q = hungarian matcher(o_p, o_q)
#======== counterpart alignment (Eq.10) ========#
B × N
indices = argmax(A_p_q, dim=-1)

indices after flatten the batch
indices = [indice + b_idx * indices.size(0) for

b_idx, indice in enumerate(indices)]
indices = stack(indices, dim=0).flatten(0, 1)

cross batch affinity for more negative samples
affinity = softmax(o_p.flatten(0,1) * o_q.

flatten(0,1).transpose(), dim=1)

#==== object-level coherence loss (Eq.11) =====#
l_oc = nll loss(affinity, indices)

return l_oc

Figure S3. Correspondence matching results for STCN+Ours and STCN [2] on DAVIS2017 [6] dataset, where the query pixel and
the matching response in another distant frame are highlighted.

Figure S4. More qualitative comparisons between STCN+Ours and STCN[2] on YouTube-VOS2019val [7] and DAVIS2017test [6].

Figure S5. More qualitative comparisons between STCN+Ours and STCN[2] on YouTube-VOS2019val [7].

Figure S6. More qualitative comparisons between XMem+Ours and XMem[1] on YouTube-VOS2019val [7].

Figure S7. More qualitative comparisons between XMem+Ours and XMem[1] on YouTube-VOS2019val [7] and DAVIS2017val [6].

Figure S8. More qualitative comparisons between XMem+Ours and AOT[8], RDE[4], PCVOS[5] on YouTube-VOS2019val [7].

Figure S9. More qualitative comparisons between XMem+Ours and AOT[8], RDE[4], PCVOS[5] on YouTube-VOS2019val [7].

References
[1] Ho Kei Cheng and Alexander G. Schwing. Xmem: Long-term

video object segmentation with an atkinson-shiffrin memory
model. In ECCV, 2022. 1, 7, 8

[2] Ho Kei Cheng, Yu-Wing Tai, and Chi-Keung Tang. Rethink-
ing space-time networks with improved memory coverage for
efficient video object segmentation. In NeurIPS, 2021. 1, 4,
5, 6

[3] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li
Fei-Fei. Imagenet: A large-scale hierarchical image database.
In CVPR, 2009. 2

[4] Mingxing Li, Li Hu, Zhiwei Xiong, Bang Zhang, Pan Pan,
and Dong Liu. Recurrent dynamic embedding for video object
segmentation. In CVPR, 2022. 1, 9, 10

[5] Kwanyong Park, Sanghyun Woo, Seoung Wug Oh, In So
Kweon, and Joon-Young Lee. Per-clip video object segmen-
tation. In CVPR, 2022. 1, 9, 10

[6] Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Ar-
beláez, Alex Sorkine-Hornung, and Luc Van Gool. The 2017
davis challenge on video object segmentation. arXiv preprint
arXiv:1704.00675, 2017. 1, 4, 5, 8

[7] Ning Xu, Linjie Yang, Yuchen Fan, Jianchao Yang,
Dingcheng Yue, Yuchen Liang, Brian Price, Scott Cohen, and
Thomas Huang. Youtube-vos: Sequence-to-sequence video
object segmentation. In ECCV, 2018. 1, 5, 6, 7, 8, 9, 10

[8] Zongxin Yang, Yunchao Wei, and Yi Yang. Associating ob-
jects with transformers for video object segmentation. In
NeurIPS, 2021. 1, 9, 10

