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1. Appendix

In the supplementary material, we show the complexity
analysis of our CLAMP and add another ablation study to
study the impact of the regularization from losses. Then we
evaluate the generalization ability of the proposed CLAMP
model by involving more unseen animal species in the zero-
shot learning setting. In addition, we visualize the spatial-
level score map to further validate the effectiveness of the
spatial-level adaptation process in CLAMP by explicitly
demonstrating the established spatial connections. At last,
we show some pose estimation results from SimpleBase-
line [2] and CLAMP for qualitative comparison, which
shows that CLAMP can perform robustly on different an-
imal species with different postures and sizes.

1.1. Complexity Analysis

We performed the complexity analysis of our CLAMP
and the SimpleBaseline method, and the results are in Ta-
ble S1. The numbers of parameters and GFLOPs are cal-
culated on 256 by 256 images. The results show that our
CLAMP brings significant accuracy improvements with a
little complexity increase. In practice, the increased com-
plexity is mainly from the cross-attention and prompt en-
coder. Since our proposed adaptation schemes mainly im-
prove training, they only bring less than 0.01 extra GFLOPs
and 0 extra parameters during inference. Note that the
prompt embeddings encoded by the text encoder can be
stored offline after training and are shared by all the test
images, so the text encoder will not add complexity to in-
ference.

1.2. Additional Ablation Study

We validate that our method can effectively leverage
CLIP’s capability with the following results. We tested the
models’ performance under the setting where the Eprompt

is replaced by a trainable matrix for training, obtaining a

Method Backbone Params(M) GFLOPs AP
SimpleBaseline [2] ResNet-50 49 9.0 70.9

CLAMP (ours) ResNet-50 68 9.2 72.9
SimpleBaseline [2] ViT-Base 91 16.6 72.6

CLAMP (ours) ViT-Base 98 16.8 74.3

Table S1. Complexity comparison.

Method Backbone Embedding type AP
SimpleBaseline [2] ViT-Base w/o 72.6

CLAMP (ours) ViT-Base trainable matrix 72.8
CLAMP (ours) ViT-Base prompt embedding 74.3

Table S2. Ablation study of regularization from losses.

performance gain of merely 0.2 AP w.r.t. the baseline. Al-
ternatively, our proposed method achieved a gain of 1.7 AP
with the help of feature-aware and spatial-aware adaptation.
This demonstrates that the major improvements come from
our adaptation schemes rather than other components like
initialization and regularization from losses. The results are
shown in Table S2.

We also conduct an ablation study for the ViT-Large
backbone which has a large number of parameters, and the
results can be found in Table S3. Even for the significantly
large model such as ViT-Large, CLAMP is still effective
in taking advantage of the language knowledge for animal
pose estimation.

1.3. Additional Zero-shot Experimental Results

We report more zero-shot learning experimental results
in addition to the results in the main paper to validate the
models’ generalization ability on unseen animal species,
i.e., a) training the model using animals from Bovidae and
testing the model using instances from Equidae and Feli-
dae, and b) training the model using animals from Canidae
and testing the model using instances from Cricetidae and
Equidae. The same training settings as described in the
zero-shot experimental setting in the main text are adopted



Method Backbone Pre-train AP AP50 AP75 APM APL AR
SimpleBaseline [2] ViT-Large CLIP 76.9 96.0 84.4 56.5 77.2 80.0

CLAMP (ours) ViT-Large CLIP 77.8 96.8 85.0 58.7 78.1 81.0

Table S3. Ablation study for ViT-Large on AP-10K [3].

Method Backbone Train Test AP AP50 AP75 APM APL AR
SimpleBaseline [2] ResNet-50 Bovidae Equidae 41.9 71.8 40.3 27.3 42.0 46.6

CLAMP (ours) ResNet-50 Bovidae Equidae 46.6 75.6 47.5 48.3 46.6 51.2
SimpleBaseline [2] ResNet-50 Bovidae Felidae 22.0 52.4 15.0 11.2 22.1 28.4

CLAMP (ours) ResNet-50 Bovidae Felidae 28.7 67.6 18.9 11.9 29.0 36.3
SimpleBaseline [2] ResNet-50 Canidae Cricetidae 16.1 41.7 10.1 3.4 16.5 26.0

CLAMP (ours) ResNet-50 Canidae Cricetidae 22.0 51.1 14.1 10.1 22.7 31.6
SimpleBaseline [2] ResNet-50 Canidae Equidae 20.5 43.9 16.6 11.1 20.7 25.3

CLAMP (ours) ResNet-50 Canidae Equidae 28.4 59.1 23.1 9.4 29.0 34.1

Table S4. Additional comparisons of the zero-shot generalization performance of different methods on AP-10K [3].

and the results are available in Table S4. We can observe
that with the help of pose-specific text prompts and the de-
composed adaptation process, our CLAMP outperforms the
SimpleBaseline by a large margin, e.g., 46.6 AP vs. 41.9
AP, 28.7 AP vs. 22.0 AP, 22.0 AP vs. 16.1 AP, and 28.4
AP vs. 20.5 AP, respectively in these four settings. Such
observation validates that language knowledge can improve
the model’s generalization ability since the shared language
knowledge of keypoints can alleviate the difficulties caused
by large visual inter- and intra-species variances.

1.4. Performance on the human pose estimation
dataset

Our method can be extended to human pose by replac-
ing the KeyPoint in Eq.(2) in the main text with the names
of human keypoints, but we found that the human pose es-
timation methods can easily achieve compelling results by
taking advantage of rich labeled data. This can marginalize
the benefits of the knowledge in CLIP. In practice, we have
tested our method on the COCO human pose dataset [1],
obtaining 0.4 AP improvement. However, we found that
our CLAMP can bring more benefits for human pose esti-
mation in low-data regimes. We test our method on random
k% of COCO data for k ∈ {1, 2, 3, 5, 10} and display the
mean results of three times random sampling on COCO in
Table. S5.

1.5. Visualization of Spatial-level Score Maps

Based on Eq.(3) and Eq.(4) in the main text, we can ob-
tain the keypoint presence score on each spatial position of
the input image with the help of spatial-level loss Lspatial.
We visualize the upsampled score maps in Fig. S1, which
displays the established spatial connections between lan-
guage descriptions and image features in our CLAMP. It
can be seen that for each keypoint description, the highest
score values show up in the corresponding image region that
has the same semantics as the keypoint description. This in-

dicates that the spatial-level loss helps establish spatial con-
nections between language knowledge and visual features,
which can provide positional information for animal poses.

Figure S1. Visualization of the spatial-level score maps. In order
to intuitively display the relationship between the keypoint pres-
ence score and the animal image, we superimpose the obtained
score maps on the animal image. As shown in the figure, the light-
ness and darkness of the pixels are used to indicate the keypoint
presence score (the brighter pixels indicate the higher scores). The
superimposed images for different keypoints are displayed in the
following order: right eye, nose, left eye, right shoulder, neck, left
shoulder, right elbow, right front paw, and left front paw (from the
first row to the last row, from left to right in each row).



Method Backbone Pre-train AP@1% AP@2% AP@3% AP@5% AP@10%
SimpleBaseline [2] ViT-Base CLIP 49.5 53.3 55.5 58.4 62.1

CLAMP (ours) ViT-Base CLIP 53.1 56.8 57.6 59.5 62.7

Table S5. Performance on COCO [1] in low-data regimes. Note that AP@k% means the AP on random k% of COCO data.

Figure S2. Qualitative analysis of the SimpleBaseline [2] (the first row) and the proposed CLAMP (the second row). The ground truth
poses are shown in the last row.

1.6. Qualitative Analysis

To get an intuitive understanding of the proposed
method, we show some qualitative results in Fig. S2 and
Fig. S3. In each figure, the baseline method, i.e., Simple-

Baseline [2], the proposed CLAMP, and the ground truth are
shown from top to bottom. As can be seen, our method can
produce accurate pose estimation results on animals with
large variances in appearances and poses. Taking the first



Figure S3. More qualitative results of the SimpleBaseline [2] (the first row) and the proposed CLAMP (the second row). The ground truth
poses are shown in the last row.

column in Fig. S2 as an example, the baseline method in
the first row overlooks the neck and left hip of the panda.
By contrast, our CLAMP successfully leverages the lan-
guage knowledge and outputs all keypoints that are labeled
in the ground truth. Similar results can also be observed in
the images of other animal species. Besides, CLAMP can
sometimes produce more accurate results than human anno-
tations. For example, in the second column, the neck, the
left elbow, and the left shoulder are neglected or probably
incorrectly labeled. By contrast, our CLAMP can locate
and recognize those keypoints, demonstrating its potential
in dealing with hard cases.
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