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A. More Related Work
A.1. Class Relationship

Numerous UDA methods have explored the prediction
space to enhance feature learning [0, 28, 38], while most of
them only focus on the intra-class relationship. Some meth-
ods [18,24] propose to utilize the inter-class term, but their
primary objective is to suppress it and produce more confi-
dent predictions. It is implemented by directly minimizing
the inter-class term [18] or resorting to adversarial training
between two classifiers [24]. Different from them, we use
the source prior class similarity as coefficient for the inter-
class term instead of a fixed value. It is beneficial to ac-
curately represent the similarity between two samples. The
experimental results show that our method can surpass them
even without source supervision during target training.

In SFUDA, class relationships can be implicitly learned
through pseudo labeling [14, 25] or prediction consistency
of neighborhoods [52-54]. CAiDA [8] focus on multi-
source-free domain adaptation, and propose to preserve the
consistency of the interclass relationship by aligning soft la-
bel distributions across domains. It relies on multiple source

*Corresponding author

models and needs to construct prototype-level class distri-
bution through pseudo label. Differently, we propose to em-
bed the source class relationship in the sample-level simi-
larity computation, which is a finer grained constraint. The
results under multi-source-free DA show the superiority of
our method even without domain labels.

A.2. Contrastive Learning

Contrastive Learning has shown remarkable advantages
in self-supervised learning [4, 9, |1, 13, 30, 32]. The con-
trastive loss measures the similarity of representation pairs
and attempts to distinguish between positive and negative
pairs. MoCo [|!] maintains a queue of previously pro-
cessed embeddings as negative memory bank. SImCLR [4]
shows that large batch size and strong data augmentations
has a comparable performance to the memory-based ap-
proaches. We adopt a similar architecture to MoCo [11]
to perform contrastive learning.

In Unsupervised Domain Adaptation (UDA), most ap-
proaches [16, 19, 55] use contrastive loss on the basis of
class-wise prototypes with a sample selection strategy. Only
a few methods [20, 37, 41] use the instance discrimination
based contrastive loss. CDS [20] employs contrastive learn-
ing in a pre-train step before proceeding to a domain align-
ment stage. CLDA [41] suggests that the classifier can be
used as a contrastive projection head [4]. ContrastMix [37]
conducts temporal contrastive self-supervised learning over
the graph representations. Among these methods, none of
them explicitly consider embedding class relationship into
similarity computation as our method.

DaC [57] proposes a Divide and Contrast paradigm
where the target samples are divided into source-like and
target-specific ones, and learned through contrastive loss.
For the source-like samples, they conduct class-wise con-
trastive learning where positive samples are class centroids.
For the target-specific samples, local structure is considered
where positive samples are nearest neighbors and another
view. They design a momentum updated memory bank to
provides source-like centroids and target-specific features.



Our method is actually different from DaC in four aspects:
1) Our main idea is to utilize source class relationship, and
DaC is meant to learn source-like and target-specific sam-
ples differently. 2) Our method is more concise, we do not
need to maintain a memory bank storing all features. 3)
Our contrastive loss is based on probabilities, while DaC is
based on original features. 4) We do not consider the nearest
samples as positive samples, but show the complementar-
ity between our method and local neighbor based method
AaD [54]. Finally, our method can achieve better perfor-
mance than DaC, for example, ours 75.9% vs. DaC 72.8%
in Office-Home and ours 89.6% vs. DaC 87.3% in VisDA.

B. Experiments
B.1. Training Details

For our proposed method, we use two kinds of augmen-
tation to generate two different views, namely weak aug-
mentation and strong augmentation. For the weak augmen-
tation, we use random resize, random crop, and random
horizontal flip. For strong augmentation, we further add
RandAugment [7] by randomly sampling two augmenta-
tions from a transformation set, including color, brightness,
contrast adjustments, rotation, polarization, etc.

We use the same network architecture as SHOT [25] i.e.,
the final part of the network is: fully connected layer - Batch
Normalization [17] - fully connected layer with weight nor-
malization [40]. This is also used in our experiments in
Transformer based backbone. We further adopt the same
learning rate scheduler n = 7 - (1+10-p) =% as [10,28],
where p is the training progress changing from O to 1. The
initial learning rate for Office-31 and Office-Home is set
to le-3 for all layers, except for the last two newly added
fc layers, where we apply le-2. Learning rates are set 10
times smaller for VisDA. For DomainNet, the initial learn-
ing rate is set to Se-4. We train 40 epochs for Office-31 and
Office-Home, 25 epochs for DomainNet, and 15 epochs for
VisDA.

We fixed source pre-trained classifier following
SHOT [25]. In the official implementation of AaD [54],
the classifier is not fixed. We find that fixing the classifier
in AaD will decrease some performance. However, when
combining AaD with our method, fixing classifier or not
does not effect the final performance. Thus, we fix classifier
in all experiments.

Following the protocols in SHOT [25], the source do-
main consists of 25 classes (the first 25 in alphabet or-
der) but the target domain contains 65 classes including un-
known samples for an open-set scenario. For a partial-set
scenario, the source domain consists of 65 classes, but the
target domain contains the same 25 classes.

B.2. Detailed Results Beyond Average Accuracy

In some benchmarks, we only report the average per-
formance due to the limitation of space. Here we give
the detailed results. Table 3 shows the class-wise accu-
racy in VisDA under single-source unsupervised domain
adaptation setting. Table 4 shows the results of partial-set
and open-set domain adaptation on Office-Home. Table 5
shows the results of ViT-B backbone on Office-Home un-
der single-source unsupervised domain adaptation setting.

B.3. Other Ways of Utilizing A°®

Given the source class similarity matrix A®, an natural
way of utilizing it is to obtain target class similarity matrix
A! by target prototypes and then enforce consistency be-
tween A and A*. To get A*, we first obtain the pseudo
labels following SHOT [25]. For the target prototype, we
tried batch-level or EMA-updated global-level prototypes.
There are no obvious differences in performance. The loss
can be presented as

Econ = HAS - At”%" (1)

where || M || p represents the Frobenius norm of M.

Another way is to embed A*® into the cross-entropy loss
of FixMatch [42] as weights. Specifically, the weighted Fix-
Match loss is presented as

e}
gweightcd,fm (p) = - Z Als* zlog(pl) (2)
=1

where p is the predicted probability of strongly augmented
view. C'is the number of classes. [* is the pseudo label class
obtained from clustering based strategy in SHOT [25].

The result is shown in Table 1. It can be seen that con-
sistency between A% and A can bring improvements over
SHOT-IM baseline, but is not as effective as FixMatch. Us-
ing weighted FixMatch by A® can bring very limited im-
provement. This validates the importance of our proposed
contrastive loss, which can fully exploit the source class
similarity.

Table 1. Comparison with other ways using A® in a class-wise
manner. The experiments are conducted on Office-Home under
SUDA setting.

Method Avg
SHOT-IM 70.5
+ FixMatch 72.9
+ Prototype Similarity Consistency 72.3
+ Weighted FixMatch 73.1
+CR-CACo 74.8
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Figure 1. Classifier weights similarity of different domains. The
diagonal elements with original value 1 are changed to O for better
visualization.

B.4. Compatibility with Non-source-free DA

We further evaluate the effectiveness of our method
in non-source-free DA. As described before, our method
should be combined with other methods that can produce
confident samples. Here we choose the output space based
domain adversarial methods [28, 47]. The distribution
across domains are encouraged to be aligned through do-
main adversarial training, and the target samples will be-
come more confident as the source samples.

For Office-Home dataset, we use ResNet-50 backbone,
and for VisDA dataset, we use ResNet-101 backbone. In-
stead of using clustering based pseudo label strategy as in
SHOT [25], we directly generate pseudo label from the pre-
diction of weakly augmented views for simplicity.

Unlike SFUDA where the A® is fixed after given the
source pre-trained model, here we use the learnable clas-
sifier weights to generate A®. This is reasonable since the
learning rate of classifier is ten times larger than feature ex-
tractor, and the class similarity can be quickly learned.

Results are shown in Table 2. It can be seen that our
method can bring consistent improvements.

Table 2. Compatibility with non-source-free DA works on
Office-Home and VisDA under SUDA setting.

Method Office-Home VisDA
CDAN [28] 65.8 73.9
CDAN + ours 73.0 (+7.2) 82.8 (+8.9)
ToAlign [47] 72.0 80.1
ToAlign + ours 75.1 (+3.1) 88.7 (+8.6)

B.5. About the Class Relationship Prior

Besides intuitive rationality, we visualized the cosine
similarity matrix of classifier weights trained by the data
from different domains. We found that similar classes in
one domain are more likely to be similar in other domains.
In particular, we provide the results of VisDA in Figure 1
here.

Office—31 Dataset Office—Home Dataset VisDA Dataset
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Figure 2. Ajnter in different losses and datasets.

B.6. Setting of )\,

Ainter = 1.0 is always set in both losses and all datasets
(L590-591). Here we provide the results of adjusting A, ter
in Figure 2. It can be seen that for two losses and different
datasets, our method is stable for A;pzer € [0.6,1.2].

C. Limitations

The limitations of our proposed approach are summa-
rized as follows:

¢ Qur proposed CR-CACo loss must be used in conjunc-
tion with methods that can generate high-confidence
samples. And our method should be combined with
other methods to achieve better performance.

e While in some datasets (i.e. VisDA with 10 classes)
which have enough samples and are relatively simple,
our method can achieve performance that is almost as
good as Oracle’s, it still has a larger gap with Oracle’s
performance in other more difficult datasets (i.e. Do-
mainNet).
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Table 3. Single-Source Unsupervised Domain Adaptation (SUDA) on VisDA benchmarks. * indicates results from released code. (+x.x)
indicates absolute improvements over SHOT-IM and AaD respectively.

Method SF plane beycl bus car horse knife mcycl person plant sktbrd train truck Avg
BCDM (AAAT’20) [24] 95.1 876 812 732 927 954 869 825 951 848 881 395 834
MCC (ECCV’20) [18] 88.7 803 805 715 901 932 850 716 8.4 738 850 369 788
FixBi (CVPR’21) [31] 96.1 87.8 905 903 96.8 953 928 887 972 942 909 257 872
FAA (ICCV’21) [15] 91.6 805 815 707 89.6 810 875 799 871 864 810 751 827
SHOT (ICML’20) [25] 943 885 80.1 573 931 949 807 803 915 8.1 863 582 829
CPGA (IICAT’21) [34] 948 836 79.7 651 925 947 90.1 824 888 88.0 889 60.1 84.1
VDM-DA (TCSVT’21) [44] 969 90.0 B80.0 644 968 964 867 833 962 879 898 547 853
A%Net (ICCV’21) [48] 940 878 856 668 937 951 858 812 916 882 865 560 843
HCL(NeurIPS’21) [14] 933 854 80.7 685 91.0 881 86.0 786 86.6 888 800 747 835
NRC (NeurIPS’21) [52] 96.8 913 824 624 962 959 86.1 80.6 948 941 904 59.7 859
SHOT++ (TPAMI’21) [26] 97.7 884 902 863 979 986 929 841 971 922 93.6 288 873
D-MCD (AAAT’22) [5] 88.0 90.0 815 956 980 862 887 946 927 837 531 875
DIPE (CVPR’22) [45] 952 87.6 788 559 939 950 84.1 81.7 921 889 854 58.0 83.1
Sub-Sup (ECCV’22) [21] - - - - - - - - - - - - 88.2
BMD (ECCV’22) [35] 969 87.8 90.1 913 97.8 978 90.6 844 969 943 909 459 887
CoWA-JMDS (ICML’22) [23] 96.1 878 905 903 96.8 953 928 887 972 942 909 257 872
Feat-Mixup (ICML’22) [22] - - - - - - - - - - - - 87.8
DaC (NeurIPS’22) [57] 96.6 868 864 784 964 962 936 838 968 951 89.6 500 873
SHOT-IM (ICML’20) [25] 937 864 787 50.7 91.0 935 790 783 892 854 879 511 804
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Ours + SHOT-IM 98.1 91.0 869 848 975 965 914 831 97.0 958 928 54.1 89.1(+8.7)
AaD (NeurIPS) [54] 97.4 905 808 762 973 96.1 89.8 829 955 930 920 647 88.0
Ours + AaD 981 903 872 887 97.6 963 93.7 845 975 953 913 550 89.6(+1.6)

Table 4. Partial-set and open-set Domain Adaptation (PDA and ODA) on Office-Home. * indicates results from released code. (+x.x)
indicates absolute improvements over SHOT-IM and AaD respectively.

Partial-set DA SF Ar—Cl Ar—Pr Ar—Re Cl—Ar Cl—Pr Cl—Re Pr—Ar Pr—Cl Pr—Re Re—Ar Re—Cl Re—Pr Avg.
ResNet-50 [12] X 46.3 67.5 75.9 59.1 59.9 62.7 58.2 41.8 74.9 67.4 482 742 613
IWAN (CVPR’18) [56] X 53.9 54.5 78.1 61.3 48.0 63.3 54.2 52.0 81.3 76.5 56.8 829 63.6
SAN (CVPR’18) [2] X 44.4 68.7 74.6 67.5 65.0 77.8 59.8 44.7 80.1 72.2 50.2 78.7 653
ETN (CVPR’19) [3] X 59.2 77.0 79.5 62.9 65.7 75.0 68.3 55.4 84.4 75.7 57.7 845 705
SAFN (ICCV’19) [49] X 58.9 76.3 81.4 70.4 73.0 77.8 72.4 55.3 80.4 75.8 60.4 799 718
Source model only v 452 70.4 81.0 56.2 60.8 66.2 60.9 40.1 76.2 70.8 48.5 773 628
SHOT (ICML’20) [25] v 64.8 85.2 92.7 76.3 77.6 88.8 79.7 64.3 89.5 80.6 66.4 85.8 793
SHOT+HCL (NeurIPS°21) [14] v 66.9 85.5 92.5 78.3 77.2 87.1 78.3 65.1 90.7 82.4 68.7 884  80.1
CoWA-JMDS (ICML’22) [23] v/ 69.6 93.2 92.3 78.9 81.3 92.1 79.8 71.7 90.0 83.8 72.2 93.7 832
SHOT-IM (ICML’20) [25] v 579 83.6 88.8 72.4 74.0 79.0 76.1 60.6 90.1 81.9 68.3 885 76.8
Ours +SHOT-IM v 68.6 85.1 90.9 80.1 79.4 86.3 79.2 66.1 90.5 82.2 69.5 89.3  80.6
AaD* (NeurIPS’22) [54] v 67.0 83.5 93.1 80.5 76.0 87.6 78.1 65.6 90.2 83.5 64.3 873 179.7

Ours +AaD v/ 690 855 932 833 82 902 8.1 668 919 837 697 907 824
Open-set DA SF Ar—Cl Ar—Pr Ar—Re Cl—Ar Cl=Pr Cl—Re Pr—Ar Pr—Cl Pr—Re Re—Ar Re—Cl Re—Pr Avg.
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Source model only /363 548 69.1 33.8 444 492 368 292 568 514 351 623 466
SHOT (ICML'22) [25] v 645 804 847 631 754 812 653 593 833  69.6 646 823 728
SHOT+HCL (NeurlPS™21) [14] v 642 783 830  6L.1 722 796 655 593 806  80.1 720 828 732
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SHOT-IM (ICML"20) [25] v/ 625 778 839 609 734 794 647 587 83l 69.1 620 821 715
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Table 5. Single-Source Unsupervised DA (SUDA) on Office-Home with ViT-B backbone.

Office-Home

Method SF

Ar—Cl Ar—Pr Ar-Rw Cl-Ar Cl-Pr Cl-Rw Pr—Ar Pr—-Cl Pr-=Rw Rw—Ar Rw—Cl Rw—Pr Avg
ViT-B X 54.68 83.04 87.15 7730 8342 8554 7441 5090 8722 7956 5379 88.80 75.48
CDTrans (ICLR’22) [50] X 688 850  86.9 815 87.1 873 796 633 882 82.0 66.0 90.6  80.5
TVT (WACV’23) [51] X 7489 86.82 89.47 8278 8795 8827 7981 7194 90.13 8546 74.62 90.56 83.56
DOT-B (ACMMM’22) [29] X 73.1 89.1 90.1 85.5 89.4 89.6 832 721 90.4 84.4 72.9 915 843
SSRT (CVPR’22) [43] X 7517 8898 91.09 85.13 8829 8995 8504 7423 9126 8570 7858 91.78 8543
BCAT-DTF (Arxiv’22) [46] X 753 90.0 929 88.6 903 927 874 737 925 86.7 75.4 93.5 86.6
Source model v 61.7 849 87.9 795 859 8.5 775 581 88.0 81.1 59.4 884 782
SHOT-IM v 73.6 88.6 908 844 899 888 824 70 90 85.4 72.5 91.9 84.0
SHOT-IM+CR-CACo v 78.2 89.3 92.2 87.8 920 90.9 869 759 91.8 88.0 78.8 924 87.0
SHOT-IM+Ours v 79.9 903 92.9 88.6 927 915 883 716 926 89.5 81.9 93.6 88.3
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