
Complete-to-Partial 4D Distillation for Self-Supervised Point Cloud Sequence
Representation Learning – Supplementary Materials

This document provides a list of supplemental materials
to support the main paper.

• Overview of STRL and VideoMAE - We introduce
more about STRL and VideoMAE in Section A for
better comparison and understanding of our method.

• Fine-tuning on Synthia 4D - We show the result on
Synthia 4D semantic segmentation in Section B. The
performance improvement shows that our method is
also effective in outdoor scenarios.

• Data-efficient 4D Representation Learning - We
evaluate the data efficiency of our method in Sec-
tion C. The result shows the strong data efficiency of
our method.

• Additional Ablation Studies

– In Section D, we explore the influence of differ-
ent time windows in the distillation framework.

– In Section E, we examine whether to use a single
MLP or multiple MLPs to predict motion.

• Visualization on HOI4D Action Segmentation - We
give a visualization on HOI4D action segmentation in
Section F to intuitively demonstrate the outstanding
performance of our method.

• Implementation Details - We provide additional im-
plementation details of our method in Section G.

A. Overview of STRL and VideoMAE
In our experiments, we compare our method with ex-

isting work for self-supervised representation learning on
video and point cloud: STRL [4] and VideoMAE [2]. In
this section, we will introduce more about these two works.

STRL [4] learns the point cloud representation through
the interactions of two networks: the online network and the
target network. By using spatial augmentation and synthetic
sequence generation, the network is capable of capturing
spatio-temporal representation in a self-supervised manner.

VideoMAE [2] is a simple extension of Masked Autoen-
coders [3] for video representation learning. Through ran-
domly masking spacetime patches in videos and pixel-level

Table 1. Evaluation for semantic segmentation on Synthia 4D
dataset [5]

Method Frames Bldn Road Sdwlk Fence Vegittn Pole Car T.Sign Pedstrn Bicycl Lane T.Light mIoU

P4Transformer [1] 1 96.76 98.23 92.11 95.23 98.62 97.77 95.46 80.75 85.48 0.00 74.28 74.22 82.41
P4Transformer [1] 3 96.73 98.35 94.03 95.23 98.28 98.01 95.60 81.54 85.18 0.00 75.95 79.07 83.16

P4Transformer+C2P [1] 3 97.02 98.54 93.21 95.52 97.80 98.12 95.87 84.81 88.19 0.00 77.62 82.60 84.11

reconstruction, the method can outperform supervised pre-
training by large margins.

B. Fine-tuning on Synthia 4D

Partial-view Sequence Generation. We use perspective
projection to get partial-view point cloud for indoor sce-
nario experiments in the main paper. However, due to the
different property of outdoor scenarios, we do spherical pro-
jection to get the range map to do the occlusion sampling.
A detailed introduction of spherical projection can be found
in [6]. We sample the camera trajectory by continuous hor-
izontal movement around the original camera position.

Setup. Synthia 4D [5] is a synthetic dataset generated
from Synthia dataset [5]. It consists of six videos of driv-
ing scenarios where both objects and cameras are mov-
ing. Following previous work [1], we use the same train-
ing/validation/test split, with 19,888/815/1,886 frames, re-
spectively. The pre-training clip length is 12 with 4096
points in each frame. Fine-tuning is done on clip length
3 with 16384 points in each frame to keep consistent with
the previous methods. The distillation network is the same
as we introduced in the basic setting of the experiment part
in the main paper. We use P4Transformer [1] as the back-
bone. The mean Intersection over Union (mIoU) is used as
the evaluation metric.

Result. As reported in Table 1, our method has a con-
siderable improvement. This indicates that our method is
also general to outdoor scenarios. Specifically, we observe
that our method has a large improvement on several small
objects which further reflects that the network has a better
understanding of geometry and motion.
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C. Data-efficient 4D Representation Learning
We evaluate our method under limited training data on

the HOI4D Action Segmentation task. For all data-efficient
experiments, our limited data are randomly sampled from
the full dataset of HOI4D Action Segmentation dataset. For
pre-training and fine-tuning, we use the same setup as we
describe in Section 4 in the main paper. As shown in Table
2 and Figure 1. Our pre-training method shows consistently
outstanding performance in the case of lack of data, com-
pared with VideoMAE [2]. This indicates that our method
can still formulate a good 4D representation under limited
data.

Table 2. Data-efficient learning on HOI4D Action Segmentation.

%Data Scratch VideoMAE [2] C2P(ours)

10% 44.0 45.7(+1.7) 53.4(+9.4)

20% 53.9 54.8(+0.9) 69.9(+16.0)

40% 69.9 69.8(−0.1) 75.4(+5.5)

80% 76.7 77.3(+0.6) 79.0(+2.3)

Figure 1. Data-efficient learning on HOI4D Action Segmentation.
Our C2P method turns out to be more competitive as the number
of data decreases, while training from scratch and the VideoMAE
method shows significant performance degradation.

D. Different Time Windows
We believe a sequence-to-sequence distillation frame-

work encourages the network not only to perceive motion
information through geometric consistency but also to ob-
tain complete geometric understanding on the basis of tem-
poral cues. So the time window needs to be carefully de-
signed because it determines the source of knowledge for
sequence-to-sequence distillation. We set the time windows
to 1 (3D distillation), 3 (our setting), and 5 for experiments
on HOI4D action segmentation.

Results are shown in Table 3. When the size of the time
window is set to 1, 3D distillation is clearly not enough to
learn a good 4D representation due to the sacrifice of the
benefits from temporal information. When the time window
size is set to 3, the network is able to learn temporal infor-
mation between multiple frames, resulting in a better ability
to leverage temporal information and better performance.
As we continue to increase the time window to 5, we ob-
serve some performance degradation which may be resulted
by the complexity and difficulty of optimization. Specif-
ically, per-frame prediction needs more mlp-heads, which
makes the network not easy to integrate spatial-temporal in-
formation among different frames. To verify this, we con-
duct another experiment with time window size set to 5. We
use two predictors to predict the i-2 frame and i+2 frame re-
spectively. As shown in Table 3, we get a result similar to
the best performance. The above experiments show that our
method likewise gains improvement with a larger time win-
dow size, but the problem of optimization should be taken
into account in deciding which frames are selected to do the
distillation.

Table 3. Comparison of different time window size.

Window Size Accuracy

1 79.84
3 81.10
5 79.76

5 (±2 frames) 80.75

E. A Single MLP or Multiple MLPs

In our 4D-to-4D distillation framework, the network
learns to aggregate temporal information by predicting
frame-wise features. Considering the difference between
frames, we use frame-wise predictors to gain better predic-
tion results. We believe frame-wise predictor plays a pos-
itive role in attaining better spatial-temporal information.
Experiments have been conducted to verify the impact of
different predictor choices. For a time window size set to
3, we use a single mlp-head predictor to replace the frame-
wise predictor and get a degradation of 0.92 than the orig-
inal result, indicating frame-wise predictors are more ca-
pable of capturing spatial-temporal information. With the
time window size set to 5, we use two predictors to pre-
dict the previous two frames and the latter two frames re-
spectively. We get a degradation of 0.66 compared with
the results shown in Table 3. Experiments show that sin-
gle predictor for multiple frames makes it difficult to aggre-
gate cross-time information and our frame-wise predictor is
quite important for a better integration of spatial-temporal
information.



Table 4. Comparison of mlp-head choice.

Window Size Accuracy

1 mlp for 3 frames 80.18
2 mlps for 5 frames 80.09

F. Visualization on HOI4D Action Segmenta-
tion

We give a visualization of HOI4D Action Segmentation
in this section to intuitively demonstrate the outstanding
performance of our method. As shown in Figure 2, each row
from the top to the bottom: ground truth, train from scratch,
pretrain with VideoMAE, pretrain with STRL and pretrain
with C2P. Results show that our method outperforms the
others in the continuity and accuracy of the segmentation,
which results in a better performance on all the metrics.

G. Implementation Details
In this section, we introduce the details of the implemen-

tation of HOI4D Action Segmentation experiments.
Pre-training setup We use SGD optimizer to train the

network. The learning rate is set to be 0.01 and we use a
learning rate warmup for 10 epochs, where the learning rate
increases linearly for the first 10 epochs. The dimension of
the features used to calculate the contrastive loss is set to
2048. The temperature τ used when calculating contrastive
loss is set to 0.07. The time window size is set to 3. As
for P4DConv, we set the spatial stride to 32, the radius of
the ball query is set to 0.9 and the number of samples is set
to 32 by default. With batch-size set to 8, our pre-training
method can be implemented on two NVIDIA GeForce 3090
GPUs.

Fine-tuning setup We use SGD optimizer to fine-tune
the network. The learning rate is set to be 0.05 and we use
a learning rate warmup for 5 epochs likewise. To achieve
better performance, we apply learning rate decay on 20 and
35 epochs with a decay ratio set to 0.5. For model parame-
ters, the hyper-parameters of the model are exactly the same
as pre-training. With batch-size set to 8, our fine-tuning
method can be implemented on two NVIDIA GeForce 3090
GPUs.
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Figure 2. Visualization of results of action segmentation on HOI4D.


