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A. Discussions
A.1. Parameter Analysis

We study the balance weight λ as defined in Eq.10 in the main text as well as the sensitivity of the parameter K that
determines the number of split groups in the proposed Split-Merge Fusion (SMF).
Parameter K. For parameter K, we study its sensitivity by changing it from 1 to 64. Since the number of channels C should
be divisible by the number of groups K, we select K = (1, 4, 8, 16, 32, 64), where K = 1 means no splitting and K = 64
means each group of feature contains 4 channels. The experiments are conducted over domain adaptation tasks Cityscapes
→ Foggy Cityscapes and SIM 10k → Cityscapes, and Tables 1 and 2 show the experiment results. It can be seen that the
performance of DA-DETR is quite tolerant to parameter K and the best performance is obtained when K = 32.

K (the number of groups in SMF)

Scenario 1 4 8 16 32 64

Weather 41.7 42.3 43.1 43.3 43.5 43.2

Table 1. Parameter K affects domain adaptation in scenario Normal weather to Foggy weather: Cityscapes → Foggy Cityscapes (in mAP).

K (the number of groups in SMF)

Scenario 1 4 8 16 32 64

Scene 52.3 53.1 53.6 54.1 54.7 54.2

Table 2. Parameter K affects domain adaptation in scenario Synthetic scene to Real scene: SIM 10k → Cityscapes (in mAP).

Balance weight λ. For balance weight λ, we study its sensitivity by changing it from 0.01 to 1.0. The experiments are
conducted over the tasks Cityscapes → Foggy Cityscapes and SIM 10k → Cityscapes. As shown in Tables 3 and 4, the
performance of DA-DETR is quite tolerant to λ and the best detection performance is obtained when λ is set at 0.1.

λ

Scenario 0.01 0.02 0.05 0.1 0.5 1.0

Weather 43.0 42.9 43.3 43.5 43.2 43.1

Table 3. Parameter λ affects domain adaptation in scenario Normal weather to Foggy weather: Cityscapes → Foggy weather (in mAP).
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λ

Scenario 0.01 0.02 0.05 0.1 0.5 1.0

Scene 54.1 53.8 54.2 54.7 54.2 54.1

Table 4. Parameter λ affects domain adaptation in scenario Real scene to Synthetic scene: SIM 10k → Cityscapes (in mAP).

A.2. Effectiveness of CNN-Transformer Blender (CTBlender)

We study how the proposed CTBlender helps to align cross-domain features over task Cityscapes → foggy cityscapes. As
Figs. 1(b) and (c) show, the direct alignment with two types of features including CNN features f and Transformer features p
helps to reduce inter-domain distance as compared with that of the original features (without domain adaptation) as shown in
Fig. 1(a). With the proposed CTBlender, the generated source and target features are better aligned (with smaller inter-domain
distance D) as shown in Fig. 1(d), demonstrating that CTBlender helps to align cross-domain features effectively.

(a) Original features (b) Alignment (CNN features) (c) Alignment (Transformer fea-
tures)

(d) Adapted by DA-DETR

Figure 1. The t-SNE [8] visualization of feature representations under the scenario Normal weather to Foggy weather (Cityscapes →
Foggy cityscapes): Red points represent source features and blue points represent target features. D denotes the distance between source
and target feature representations as measured by Maximum Mean Discrepancy [4]. Direct alignment by CNN features or Transformer
features helps to reduce inter-domain distance as shown in (b) and (c). The proposed DA-DETR can further reduce inter-domain distance
clearly as shown in (d).

A.3. Discriminator Analysis

In the proposed CTBlender, the fused features are fed to the discriminator Cd for inter-domain alignment via adversarial
learning. The discriminator Cd simply consists of two 1x1 convolutional layers as in the prior work [2]. We conduct new
experiments to discuss how different discriminator structures affect the model performance. The experiments are conducted
over domain adaptation tasks Cityscapes → Foggy Cityscapes on DETR [13]. As Table 5 shows, the proposed DA-DETR is
tolerant to different discriminator structures and can achieve superior domain adaptation performance consistently.

Methods Architecture of Discriminator mAP

DA-DETR 3 1x1 conv. layers [11] 42.8
DA-DETR 3 3x3 conv. layers and 1 linear layer [10] 43.1
DA-DETR 1 linear layer [7] 42.3
DA-DETR 2 1x1 conv. layers (default) 43.5

Table 5. Different discriminator designs vs DA-DETR performance over task Cityscapes → Foggy Cityscapes.

A.4. Comparison with Other UDA Methods

Besides adversarial alignment, we compare the proposed DA-DETR with another two recent UDA-based detection ap-
proaches, i.e., self-training approach that iteratively pseudo-labels target samples in network training and image translation
approach that mitigates domain gaps by modifying source images to have target-like image styles. Table 6 shows experimen-
tal results. It can be observed that the proposed DA-DETR achieves competitive performance as compared with the com-
pared self-training methods and image-translation methods. Note many prior studies combine different UDA approaches.
For example, [3, 12] exploits both adversarial alignment and self-training. [5, 6] combine image translation and adversarial



alignment for UDA. In addition, self-training and image translation are often more complicated and computational intensive.
For example, self-training usually involves multiple training iterations with online/offline pseudo-labeling. Image translation
usually requires a separate process to train specific image translation models before UDA, etc.

Cityscapes → Foggy cityscapes

Method Type Backbone person rider car truck bus train mcycle bicycle mAP

DETR [13] None ResNet-50 37.7 39.1 44.2 17.2 26.8 5.8 21.6 35.5 28.5
DAM [6] IT & AL ResNet-50 46.7 43.5 60.2 24.3 36.8 28.3 27.3 42.1 38.7

Progressive DA [5] IT & AL ResNet-50 49.2 48.9 60.1 22.5 40.8 31.6 25.7 42.5 40.2
UMT [3] AL & ST ResNet-50 49.5 49.2 62.1 26.1 43.2 29.5 31.2 43.9 41.8
CST [12] AL & ST ResNet-50 49.3 48.7 59.3 26.3 41.2 34.6 27.8 42.8 41.3

SimROD [9] ST ResNet-50 48.8 48.9 61.5 27.7 41.9 35.9 28.9 43.2 42.1
DA-DETR AL ResNet-50 49.9 50.0 63.1 24.0 45.8 37.5 31.6 46.3 43.5

Table 6. Comparing the proposed DA-DETR with self-training methods and image-translation methods. IT, AL and ST stand for image
translation, adversarial learning and self-training, respectively.

B. Qualitative Results
We perform qualitative experiments as well and Fig. 2 shows experimental results. We can observe that the baseline

model DETR [13] produces a number of false detection due to domain gaps. State-of-the-art domain adaptation method [7]
generates more precise bounding boxes but tends to miss many small objects. The proposed DA-DETR adapts well under all
four scenarios and can detect more small objects with less false alarms as illustrated.



DETR [1] SAP [7] DA-DETR(ours) Ground Truth

Figure 2. Qualitative comparison of DA-DETR with DETR [13] and SAP [7] over four domain adaptive detection benchmarks including
Cityscapes → Foggy cityscapes as in the first and second rows, SIM 10k → Cityscapes as in the third and forth rows, PASCAL VOC →
Clipart1k as in the fifth and sixth rows and KITTI → Cityscapes as in last two rows, respectively. DA-DETR outperforms DETR and SAP
consistently by detecting more accurate boxes across all sample images.
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