
Delivering Arbitrary-Modal Semantic Segmentation

(Supplementary Material)

A. DELIVER Dataset

A.1. Detailed settings in data collection

Depth2Frames. The depth camera straightforwardly out-

puts a grayscale depth map (i.e. 0–255 scales), which will

cause discontinuity and quantization errors in distance mea-

surements. Therefore, we convert the original depth image

to the depth frame using a logarithmic scale, leading to mili-

metric granularity and better precision at close ranges.

Event2Frames. The positive- and negative event threshold

of the event camera are both set to 0.3. We record raw event

point cloud between two adjacent frames and convert the

last occurring event among all pixels into an event frame,

where blue indicates positive and red indicates negative.

LiDAR2Frames. We transform the LiDAR point cloud to

the image coordinate system, so as to obtain an image-like

representation of LiDAR data. The Field-of-View (FoV)

of the front camera is 91◦ and the image resolution is

H×W=1042×1042. The origin is (u0, v0)=(H/2,W/2).
The focal length (fx, fy) is calculated as:

fx=H/(2×tan(FoV×π/360)), (1)

fy=W/(2×tan(FoV×π/360)). (2)

To project 3D points to 2D image coordinate, we have:
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where (X,Y,Z) is the LiDAR point, (u, v) is the 2D image

pixel, and the rotation (R) and the translation (t) matrices

are set as the unit matrix in the CARLA simulator [2].

A.2. Dataset structure

DELIVER contains Depth, LiDAR, Event, and RGB

modalities. As shown in Fig. 1, four adverse road scene

conditions of rainy, sunny, foggy, and night are included in

our dataset. There are five sensor failure cases including

Motion Blur (MB), Over-Exposure (OE), Under-Exposure

(UE), LiDAR-Jitter (LJ), and Event Low-resolution (EL) to

verify that the performance of model is robust and stable in

the presence of sensor failures. The sensors are mounted at

different locations on the ego car to provide multiple views

including front, rear, left, right, up, and down. Each sample

is annotated with semantic and instance labels. In this work,

we focus on the front-view semantic segmentation.

The 25 semantic classes in DELIVER dataset are: Build-

ing, Fence, Other, Pedestrian, Pole, RoadLine, Road, Side-

Walk, Vegetation, Cars, Wall, TrafficSign, Sky, Ground,

Bridge, RailTrack, GroundRail, TrafficLight, Static, Dy-

namic, Water, Terrain, TwoWheeler, Bus, Truck.

A.3. Dataset statistics

We present statistics of the DELIVER dataset in Table 1.

We discuss data partitioning in two groups, one according to

the conditions and the other according to the sensor failures.

Note that, the two groups are mutually inclusive. The five

cases from the second group are included in each of five

conditions from the first group. For example, cases of MB,

OE, UE, LJ, and EL are included in cloudy, foggy, night,

rainy, and sunny conditions, but with different samples. To

investigate the robustness under sensor failures, we collect

1199, 400, 398, 398, and 409 frames on respective cases.

A.4. Dataset comparison

As shown in Table 2, we compare several datasets

with adverse conditions and cases. All the datasets cover

the whole daytime. The real-scene datasets, e.g., Wild-

Dash [12] and Waymo [9], capture data by using only one or

a few sensors, which results a lack of data diversity. In con-

trast, our DELIVER dataset has four different modalities,

including RGB, Depth, Event and LiDAR, which enables the

multimodal semantic segmentation task to involve up to 4
modalities. Compared to previous synthetic datasets, e.g.,

SELMA [10], SynWoodScape [7], SynPASS [13], our DE-

LIVER additionally includes 5 types of sensor failure. Each

sample has semantic and instance annotations, so semantic,

instance and panoptic segmentation tasks can be conducted

on our DELIVER dataset.

B. Implementation Details

We conduct our experiments with PyTorch 1.9.0. All

models are trained on a node with 4 A100 GPUs. Below we

describe the specific implementation details for six datasets.

Data representation. For depth images, we follow SA-

Gate [1] and CMX [6] to preprocess the one-channel depth

images to HHA-encoded representations [4], where HHA

includes horizontal disparity, height above ground, and

norm angle. The 3D LiDAR and Event data of DELIVER

dataset are transformed to the aforementioned frame format.

Then, both LiDAR- and Event-based data are preprocessed

as 2D range views [15] and 3-channel representations [14],

respectively.
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Figure 1. Data structure of the DELIVER dataset. The columns from left to right are respective conditions, cases, multiple views, modali-

ties and annotations. MB: Motion Blur; OE: Over-Exposure; UE: Under-Exposure; LJ: LiDAR-Jitter; and EL: Event Low-resolution.

Table 1. Data statistic of DeLiVER dataset. It includes four adverse conditions (cloudy, foggy, rainy, and night), and each condition has

five failure cases (MB: Motion Blur; OE: Over-Exposure; UE: Under-Exposure; LJ: LiDAR-Jitter; and EL: Event Low-resolution).

Split Cloudy Foggy Night Rainny Sunny Total Normal MB OE UE LJ EL Total

Train 794 795 797 799 798 3983 2585 600 200 199 199 200 3983

Val 398 400 410 398 399 2005 1298 299 100 99 100 109 2005

Test 379 379 379 380 380 1897 1198 300 100 100 99 100 1897

Front-view 1571 1574 1586 1577 1577 7885 5081 1199 400 398 398 409 7885

All six views 9426 9444 9516 9462 9462 47310 30486 7194 2400 2388 2388 2454 47310

Table 2. Comparison between multimodal datasets. D:Day; S:Sunset; N:Night; *:random; Sem.:Semantic; Ins.:Instance.

Dataset Type
Sensors Sensor RGB Diversity

Classes
Labels

Camera Depth Event LiDAR Failures Failures Weathers Daytime Views Sem. Ins.

WildDash [12] Real 1 0 0 0 0 15 * * * 19 ✓ ✓

Waymo [9] Real 5 0 0 5 0 0 2 DN 5 28 ✓ ✓

SELMA [10] Synthetic 7 7 0 3 0 6 9 DSN 7 19 ✓ ×

SynWoodScape [7] Synthetic 5 5 5 1 0 0 4 DS 5 25 ✓ ✓

SynPASS [13] Synthetic 6 0 0 0 0 0 4 DN 1 22 ✓ ×

DeLiVER (ours) Synthetic 6 6 6 1 5 3 4 DN 6 25 ✓ ✓

DELIVER dataset. We train our models for 200 epochs

on the DELIVER dataset. The batch size is 2 on each

of four GPUs. The resolution of all modalities is set as

1024×1024 for training and inference. In the Event Low-

resolution cases, the Event-based images with the original

size of 260×260 are upsampled to 1024×1024. During

evaluation, we only apply the single-scale test strategy. The

backbone of CMNeXt is based on MiT-B2 [11]. To ver-

ify the effectiveness of our method under convolutional net-

works, the CNN-based SegNeXt-Base [3] is selected as the

backbone, when compared to the MiT-B2 one.

KITTI-360 dataset. As there are more than 49K training

data on KITTI-360 dataset, the models are trained for 40
epochs. The image resolution is set as 1408×376 and the
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Figure 2. More visualization results on DELIVER dataset. From

left to right are the respective cloudy, foggy, night and rainy scene.

batch size is 4 on each of four GPUs. The backbone of

CMNeXt is based on MiT-B2 [11].

NYU Depth V2 dataset. Following CMX [6], the number

of training epochs is set as 500 for a fair comparison. The

resolution of RGB and Depth images is set as 640×480.

The training batch size is 4 on each of four GPUs. The

backbone of CMNeXt is based on MiT-B4 [11]. We apply

the multi-scale flip test strategy for a fair comparison.

MFNet dataset. We train our CMNeXt models with the

MiT-B4 backbone for 500 epochs on the MFNet dataset.

The resolution of RGB and Thermal images is set as

640×480 and the batch size is 4 on each of four GPUs. We

apply the multi-scale flip test strategy for a fair comparison.

MCubeS dataset. To compare with MCubeSNet [5], we

build CMNeXt with MiT-B2 and train the model for 500
epochs. Following MCubeSNet [5], the image size is set

as 512×512 during training and 1024×1024 during evalua-

tion. The batch size is set as 4 on each of four GPUs.

UrbanLF dataset. To perform comparison with the OCR-

LF model [8], we build CMNeXt with MiT-B4. The image

size on the real and synthetic sets is 640×480. The an-

gular resolution of 81 sub-aperture images of the UrbanLF

dataset is 9×9. To conduct arbitrary-modal segmentation,

the center-aperture image is selected as the primary modal-

ity, while the other apertures are as additional modalities.

We sample respective 8, 33, and 80 light field images as

the supplementary modalities, i.e., LF8, LF33, and LF80
for short. The 8 images are from the center horizontal di-

rection, while the 33 images are from the four directions of

horizontal, vertical, 1

4
π, and 3

4
π, following UrbanLF [8].

C. More visualizations on DELIVER

As shown in Fig. 2, in the four adverse weather con-

ditions, RGB-D fusion-based methods greatly improve the

performance, particularly for distant elements in foggy and

nighttime scenes. Our RGB-D solution is more accurate

than CMX (RGB-D), and the full quad-modal RGB-D-E-L

CMNeXt model further enhances the segmentation. A fail-

ure case is shown on the right column (i.e., the rainy scene)

of Fig. 2, in which the RGB-only model has a better seg-

mentation on the sidewalk class. However, our quad-modal

CMNeXt has a higher accuracy score with 94.8%.
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