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In the supplementary material, the analysis of dense
distinct queries (DDQ) to Deformable DETR [8] is first
sketched in Sec. 1. The details about auxiliary loss are
added in Sec. 2. Sec. 3 gives more detailed ablation stud-
ies and analysis of pyramid shuffle. Sec. 6 gives more de-
tailed ablation studies about the number of queries and re-
fining stages in DDQ R-CNN. Sec. 4 show the details about
DDQ R-CNN with encoder. Sec. 5 elaborate and improved
Deformable DETR and discuss the difference with DINO.
Sec. 7 gives the latency benchmark. Sec. 8 reports the
results of DDQ R-CNN with other ways to construct the
query. Sec. 9 show the results of traditional detectors with
different IOU thresholds on CrowdHuman. At last, Sec. 10
illustrates our social impact.

1. Analysis of DDQ in Deformable DETR
For fast verification of Distinct Queries Selection(DQS)

in such a heavy model, we adopt the standard 1x setting on
COCO and keep other hyperparameters (such as learning
rate and weight decay) the same with that in Deformable
DETR [8].

Figure 1. The performance comparison of Deformable DETR with
and without distinct queries selection

As shown in Fig.1, when we increase the number of

queries in Deformable DETR, there is a similar trend as it in
Sparse R-CNN [4], as shown in the main manuscript. When
the number of queries naively increases without distinct
queries selection, the performance increases at the begin-
ning but decreases as the number of queries reaches ∼ 5000.
It is due to the more difficult training with more similar
queries out of the dense queries. By imposing a distinct
queries selection pre-processing to filter out similar queries
and keeping only distinct queries before each stage of iter-
ative refinement, the performance is improved with a clear
margin, and the performance margin consistently increases
along with more queries.

Therefore, we believe Dense Distinct Queries (DDQ) is
a principle of designing an object detector with a fast con-
vergence based on recent end-to-end detectors.

2. Auxiliary Loss for Dense Queries
We follow the TOOD [3] to design our auxiliary loss.

We select K samples with the smallest cost of each ground
truth as positive samples. P means the index set of positive
samples which correspond to the same ground truth. The
classification score target of a sample i in this set is

scorei ∗ IoU6
i

Max(scorej ∗ IoU6
j )j∈P

∗Max(IoUj)j∈P (1)

The GIoU loss of each sample is reweighted by the clas-
sification target. The classification loss and regression loss
weight keep consistent with the main loss weight (1 and 2
respectively) for distinct queries. The performance is quite
stable for DDQ FCN when K ranges between 5 and 16.
We adopt 8 and 4 for DDQ FCN and DDQ DETR respec-
tively in this study. The auxiliary loss also works for re-
fining heads in DDQ RCNN. Due to time issues, we will
supplement relevant results in the future version.

3. More Analysis and Ablation for Pyramid
Shuffle

We provide an in-depth analysis of pyramid shuffle.
Firstly, we compare it with 3D MAX Filter in DeFCN [5]
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in Table. 1. Then we visualize the change of score maps
in different levels after adding pyramid shuffle operations
in Fig. 2. At last, Table. 3 gives the results under different
shuffle channels.

Table 1. Comparison between 3D MAX Filter and Pyramid
Shuffle. * means the results is unstable

Flops Parameters Operations AP
- - - 41.0*
12.2 G 0.59M Conv&GN&Relu&MaxPool3d 41.2
0.2 G 0.00M Shuffle x3 41.5
12.2 G 0.59M Conv&GN&Relu& Shuffle x3 42.0

Comparision with 3D MAX Filter Table. 1 shows the
comparison between pyramid shuffle and 3D MAX Filter-
ing in DeFCN. DeFCN believes there should be extra pa-
rameters and max pooling operation to facilitate the opti-
mization under the one-to-one assignment. However, we
argue that only the interaction of cross-level queries mat-
ters, and extra parameters or max operations are unneces-
sary. Our pyramid shuffle is more lightweight and with bet-
ter performance. When we add an extra convolution to re-
gression branches to fair compare with the 3D MAX Filter,
we can surpass it by 0.8 AP.
Visualization of Adjacent Level Score Map Fig. 2 shows
the scores map of adjacent levels. The left side of each sub-
figure(with blue background) shows score maps with pyra-
mid shuffles, and the corresponding right side (with yellow
background) means without pyramid shuffles. The top-left
corner marks the feature level. The red circle represents
the duplication predictions in the adjacent level. We can
find pyramid shuffle effectively reduces the cross-level high
score false positives.
Results under Different Shuffle Channels Table 3 gives
the results under different shuffle channels; we can find that
the number of channels can even be reduced to 16 when
there is already cross-level distinct queries selection, mak-
ing it more lightweight. When the number of shuffle chan-
nels is 128, which means no remaining channels for the cur-
rent level, the performance will dramatically drop 1.5 AP
because of missing information on the current level queries
in the interaction.

Table 2. Performance of one-stage DDQ with different numbers
of shuffle channels.

Number AP AP50 AP75

0 41.0* 59.9 45.1
8 41.2 60.3 45.4
16 41.3 60.6 45.4
32 41.4 60.6 45.5
64 41.5 60.9 45.4
96 41.6 61.1 45.7
128 39.9 59.9 43.6

3.1. Number of Pyramid Shuffle Operations

We report the results of DDQ FCN with the differ-
ent number of pyramid shuffle operations in the classifica-
tion and regression branches. When no pyramid shuffle is
adopted in the DDQ FCN, its performance is unstable and
fluctuates between 40.8 AP and 41.1 AP. We report an av-
erage performance of 41.0 AP. Even though there has been
a cross-level distinct queries selection operation, compared
to adopting only 2 and 1 operations to two branches respec-
tively, there is still a 0.5 AP drop.

Table 3. Different number Pyramid shuffle operations in DDQ
FCN. Cls means the classification branch and Reg means the re-
gression branch. * indicate the performance is unstable

Cls Reg AP AP50 AP75

0 0 41.0* 59.9 45.1
1 0 41.3 60.1 45.6
0 1 41.3 60.6 45.4
0 2 41.3 60.0 45.6
2 0 41.2 60.1 45.5
1 1 41.3 60.6 45.8
2 1 41.5 60.9 45.4
2 2 41.4 60.6 45.5
4 4 41.5 61.1 45.6

4. DDQ R-CNN with Encoder

The encoder can provide a more powerful feature repre-
sentation for the decoder head which is explored in [2,6,8].
We simply add 6 dynamic blocks in DyHead [1] as our en-
coder. 500 queries and 3 refinement stages are adopted. It
is observed in the main manuscript that there is about 3 AP
improvement for DDQ R-CNN.

5. Details of Improved DeformableDETR and
Comparison with DINO

DINO [7] adopt some techniques that significantly im-
prove the Deformable DETR. We remove the CDN and mix
query selection from DINO to form our baseline. DDQ
is a concurrent work of DINO. The contrastive denoising
training (CDN) is not intended to relieve the optimization
difficulty of very similar queries among dense queries. In
their implementation, the generated positive and negative
samples in each pair are always significantly distinct from
each other. Mix query selection increases the distinctness of
queries by additionally initializing content embeddings, but
the position embeddings are still created from top-k dense
regression predictions which can be very similar and still
hinder the optimization. We have shown our components
can be combined with DINO.



Figure 2. Visualization of score map of adjacent levels. We visualize classification scores with the rainbow color system. The left side of
each subfigure(with blue background) shows score maps with pyramid shuffles, and the corresponding right side (with yellow background)
means without pyramid shuffles. The top-left corner marks the feature level. The red circle represents the duplication predictions in the
adjacent level.

Table 4. Latency(ms) of different models with batch size 1

DDQ FCN Cascade R-CNN Sparse R-CNN Deformable DETR DDQ R-CNN DINO DDQ DETR
44.8 AP 44.3 AP 45.0 AP 46.2 AP 48.1 AP 50.9 AP 52.0 AP
22.4 ms 28.5 ms 31.0 ms 40.0 ms 31.3 ms 46 ms 58 ms

6. Number of Queries and Stages in DDQ R-
CNN

We analyze the combination of different numbers of
stages and queries for DDQ R-CNN. Table. 5 shows that

the best number of stages is proportional to the number of
queries. This is easy to understand. When the number of
queries increases, the newly added queries are of low qual-
ity, and more stages are needed to refine these queries. It is



worth emphasizing that we use 2 stages and 300 queries to
trade off the performance and latency. When using 3 stages
with the same number of queries, our method achieves an
even higher performance of 45.1 AP on MS COCO.

Table 5. Performance with different number of refine stages(S)
and queries(Q).

100 Q 200 Q 300 Q 400 Q
S=1 43.0 43.2 43.4 43.2
S=2 44.2 44.2 44.6 44.8
S=3 44.4 44.8 45.1 44.9
S=4 44.5 45.0 45.0 45.2

7. Latency Benchmark
As for the details of latency calibration, We compare the

speed (forwarding + post-processing) of different methods
with batch size 1 in Table. 4. All evaluations were per-
formed on Tesla A100 GPU with Intel(R) Xeon(R) Gold
6348 CPU @ 2.60GHz. The Pytorch version is 1.9.0 with
CudaToolkit 11.1 and Cudnn 8.0.5. An average of 200 it-
erations during model inference is adopted as the latency
reported in this study.

8. Impact of Query Construction in DDQ R-
CNN

We try five ways to construct queries in DDQ R-CNN.
As shown in Table. 6, None means all query embeddings
are set to a zero tensor, and the refinement stages only get
meaningful query bounding boxes. This attempt reduces the
performance to 43.2 AP. Simply constructing queries from
the FPN results in 1.0 AP degradation. Reg means only
using the last feature map of the regression branch, which
drops the performance by 0.6 AP. Constructing queries from
the last feature map in the classification branch can be an
alternative as it can get a comparable performance(only 0.3
AP drop).

Table 6. Impact of Query Construction in DDQ RCNN

AP AP50 AP75

None 43.2 61.0 47.9
FPN 43.6 61.7 48.0
Cls 44.3 62.2 48.6
Reg 44.0 62.5 48.3
Cls&Reg 44.6 63.0 48.8

9. DQS with Different IoU Threshold in
CrowdHuman

In this section, we show the robustness of distinct queries
selection(DQS) with different IoU thresholds in CrowdHu-
man. We can find there is a clear performance bottleneck
for traditional detector ATSS even with carefully adjusting
the threshold of NMS.

Table 7. Performance of DDQ on COCO when DQS adopts dif-
ferent IoU thresholds. Results of ATSS adopting different IoU
thresholds in post-processing are also reported. None means we
remove DQS or post-processing from the inference pipeline.

CrowdHuman 0.5 0.6 0.7 0.8 0.9 None
DDQ FCN 88.0 91.8 92.7 92.8 92.3 91.7
DDQ RCNN 91.8 92.9 93.5 93.3 93.2 93.2
ATSS 88.3 89.6 88.4 85.3 78.9 42.7

10. Social Impact
The potential social impact of this work inherits from

object detection. Because human behaviors often cause
crowded scenes, and DDQ achieves excellent performance
in such scenes, it may be applied to some applications that
violate human privacy, such as surveillance.
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