A. Factor graph and Bethe approximation

Approximations The Bethe approximation is a popular technique used in variational inference, probabilistic graphical
models, and density estimation. One of the key pillars of Bethe approximation is approximating distribution entropy with
Bethe entropy [29]. In terms of the factor graph,

Hp ZH“)+Z1— JHD, (8)

J=1

where H), %5}') denote entropy of marginal distribution ¢(f G)), q(a:(i)) defined over factor nodes and variable nodes
respectively, that is,

,H;j) — /() —q(f(j))logq(f(j))df(j), /H;(,j) :/ —q(x(i))logq(a:(i))dm(i)-
fG

x (%)

In fact, Eq. (8) can be derived via the joint distribution approximation by its marginal distribution,

/ p(u)logp(u d“’Z/U q(f9)log q(f9)df +Zlf / —q(x)log g(z)dz?. (9)

x(9)

Approximations Eq. (8) are exact when the factor graph is an acyclic graph while practitioners also use approximations in
general graphs where loops appear in the graph.

Expressiveness of DiffCollage The expressiveness of pg heavily depends on the underlying graphical model, which
encodes the conditional independence structure of data in the sparse graph structure. A sparser graph results in a simpler joint
distribution from which it is easier to draw samples. The sparsest graph consists of only variable nodes and no factor nodes,
which indicates that all random variables are independent. Though it is the simplest joint distribution, such models fail to
capture correlations between random variables and cannot express common distributions in the real world. On the other hand,
while the fully connected graphs posses rich representation ability, they are difficult to infer or generate samples from, and
Bethe approximation may suffer from large bias. Empirically, Di ffCollage is expressive enough to approximate complex
distributions on real datasets with different modalities.

Hierarchical factor graph Though we only present several simple factor graphs in the main paper, we can construct more
expressive graphical models with hierarchical factor graphs. The idea behind a “hierarchical” factor graph is to treat the nodes
and factors themselves as joint distributions over multiple random variables; by modeling these nodes / factors (defined over
multiple random variables) with factor graphs, and their likelihood can still be evaluated with Bethe approximation.

The generation of 360-degree images is a good example, where each factor node in 360 cubemap graphis a smaller
factor graph. Concretely, let us denote 6 faces as =™, ® 2 £® 20 2D Then the three factor nodes follow
FO = 2® g® o0 Z®Y r?) — (p® B U GO0 G = fpL) p® M) 2O The three variable nodes
are (V) = E (L) (R)} @) = {2V D}, 2 = {£® 2®}. We can apply Bethe approximation for the factor graph
over m(l), 2), 93(5) and f (1), f 2 . f () For the individual nodes and factors, the likelihood is defined over a set of random
variables that can be modeled with factor graphs again, this time over the 6 faces. For the factor nodes, we treat it as a loop
graph; for the variable nodes, as the faces contained within are opposite to each other, the corresponding factor graph would be
just the two disconnected components.

Another way to improve expressiveness is to incorporate different conditional signals in different nodes of the factor graph.
The approach can be interpreted as another type of hierarchical factor graph, which involves latent codes based on different
conditional signals. In fact, several works [31,53] that generate different patches of large images independently based on
global code can be viewed as a hierarchical factor graph with latent code. We apply similar techniques in our conditional
generation tasks, such as text-conditioned motion generation, and segmentation-conditioned image generation.

For applications that involve more complex dependencies among random variables and demand difficult inference tasks,
more general graph representation, such as Junction tree [29], may have some advantages over representations based on factor
graphs. We leave the generalization of Di ffCollage to more complicated graphs for future research.

B. Training and Sampling of DiffCollage
B.1. Training

DiffCollage demands diffusion models over different pieces of the target content. Ideally, Di ffCollage can work
out of the box if diffusion models over each node in the factor graphs are available. When pre-trained models are not
accessible, we can train DiffCollage in the same way as training standard diffusion models. We list the training algorithm
in Algorithms 1 and 2. We note that the learning process of one marginal is independent of others, making the training
procedure easy to scale since different marginals of DiffCollage can be learned in parallel. Moreover, different variable
nodes or factor nodes may share the same diffusion models due to symmetry, improving the scalability further.

Algorithm 1 Diffuison Collage: Training

Inputs: Marginal data on factor node {D[f)]}, marginal data on variable node {Dl[i]}
Output: Score models sy for marginal distributions
Training for marginals can be conducted in parallel.
forj€1,2,--- ,mdo
Training diffusion model sg(f), ¢) on data D[f/)]

end for
fori€1,2,--- ,ndo

Training diffusion model sg(*, t) on data D[]
end for

Algorithm 2 Training diffusion models for one node

Inputs: Marginal data D
Output: Score models sy
repeat
Sample uy from D
Sample ¢ and Gaussian noise €
U = UQ + 0r€
Gradient descent on V[w(t) ||V, 1og qos (ws|wo) — so(uy, t)]|°]
util converged

B.2. Sampling

After training diffusion models for each marginal, Dif fCollage implicitly obtains py(u,t) by its score V log pg(u, t).
The score of the learned distribution can be composited with its marginal scores sy (x¥, t), sg(f/), t):

Viogps(u,t) = sg(u,t) = > _ sa(f9,1) + > (1 di)sp(x),1). (10)
j=1 =1

The marginal scores can be computed in parallel over the entire large content, which would significantly reduce the latency of
the algorithm. We can plug Eq. (10) into existing diffusion model sampling algorithms. We include a deterministic sampling
algorithm in Algorithm 3 for reference, though we re-emphasize that any sampler applicable to regular diffusion models would
work with DiffCollage. Besides, DiffCollage also inherits the versatility of diffusion models and allows controllable
generation without re-training, such as inpainting and super-resolution [8,26]. We include more details regarding training-free
conditional generation in Appendix C.1.

Algorithm 3 DiffCollage: Sampling with Euler

Inputs: Score models s¢, decreasing time steps {t } r_,
Output: Samples from py(u)
Sample u g from prior distribution N (0, o, I)
forke K, K—-1,---1do
Pieces of sg(uy,t;) can be evaluated in parallel.
Up—1 = U + O¢, 0r, So(Wp, tr) (Ee — tr—1)
end for
Return u

C. Experiments details
C.1. Replacement and Reconstruction Methods for Conditioning

Here, we describe the details of replacement and reconstruction methods that are compared with Di ffCollage in the
experiments. In both cases, we are provided with an extra condition vy, and our goal is to generate u such that y = H(u)
for some known function H. For example, H : R™ — R™ can be a low-pass filter that produces a low-resolution image
(dimension m) from a high-resolution image (dimension n), and the task would essentially become super-resolution; similarly,
one could define an inpainting task where H is taking a subset of the pixels of the image x. Diffusion models are particularly
better-suited to such inverse problems than other generative models, such as GANs [41], as they can produce good results with
much fewer iterations [26].

Both replacement and reconstruction methods make some modifications to the sampling procedure. At a high level, the
replacement method makes a prediction over the clean image (denoted as), and replaces parts of the image g using
information about g; one could implement this as a projection if H € R™*™ is a matrix, i.e., proj(tg) = H y+ (I — H"H)
where HT is the pseudoinverse of . This is the strategy used in ILVR [8] and DDRM [26]. The reconstruction method,
on the other hand, takes an additional gradient step on top of the existing sampling step that minimizes the Lo distance
between y and Hiy; this has been shown to produce higher-quality images than replacement methods on super-resolution and
inpainting [9]. We describe the two types of conditional sampling algorithms in Algorithm 4 and Algorithm 5, respectively,
using Di ffCollage. This is almost identical to the conditional sampling algorithms with a standard diffusion model, as we
only changed the diffusion to the one constructed by DiffCollage. For autoregressive baselines, we use these algorithms
with regular diffusion models; for inpainting experiments with large images, we use them with DiffCollage.

Algorithm 4 Replacement-based Conditioning using Regular Diffusion Models

Inputs: Observation y, matrix H, score models sy, decreasing time steps {tk}kl,(zo, sampling algorithm from time ¢ to time
s using a score function, denoted as sample(score, u,, t, s).
Output: Samples from py(u) where y = H(u)
Sample u g from prior distribution N (0, o4,)
forke K, K—1,---1do
Obtain denoising result from score function sy (wy, tx).
Uy = up + CT,?}CSQ(’ll,]€7 tk).
Replacement projection based in y and H.
g = H'y + (I — H H)ay.
Sample based on corrected result.
§ = (o — up)/o},.
ug—1 = sample(8, wy, , tg, ti—1)-
end for
Return u

Algorithm 5 Reconstruction-based Conditioning with DiffCollage or Regular Diffusion Models

Inputs: Observation y, matrix 1, score models sg, decreasing time steps {tk}szo, sampling algorithm from time ¢ to time
s using a score function, denoted as sample(score, u,, t, s), and hyperparameter for reconstruction gradient ;.
Output: Samples from py(u) where y = H (u)
Sample ug from prior distribution (0, o, 1)
forke K, K—1,---1do
Obtain denoising result from score function sg(uy,).
Uy = up + U?kSQ(uk7tk~,).
Update score based in y and H.
5 = sg(up, tx) + NV, || Hao — yl3-
Sample based on new score function.
ug—1 = sample(8, wy, , tg, ti—1)-
end for
Return ug

C.2. Image experiments

Algorithm 6 Inifnite image generation with Di ffCollage: training

Inputs: Square image data D
Output: Shift-invariant score model sy for both factor nodes and variable nodes
repeat
Sample ug from D
Random crop ug by half with 50% probability
Sample ¢ and Gaussian noise e with shape of ug
Ur = UQ + 0€
Gradient descent on Vg [w(t) ||V, 10g qos (ws|uo) — so(uq, t)]|]
util converged

Training To finetune GLIDE [38] on our internal dataset, we first train our base 64 x 64 model with a learning rate 1 x 1074
and a batch size 128 for 300K iterations. Then we finetune 64 — 256, 256 — 1024 upsamplers for 100K, 50K iterations.
For the 256 — 1024 upsampler, we finetune the upsampler of eDiff-I [3]. Following the prior works [3,49], we train the
256 — 1024 model using random patches of size 256 X256 during training and apply it on 1024 x 1024 resolution during
inference. We utilize AdamW optimzer [33] and apply exponential moving average (EMA) with a rate 0.999 during training.
The base 64 x 64 diffusion model is trained to be conditioned on image CLIP embeddings with a random drop rate 50% while
the two upsampling diffusion models are only conditioned on low-resolution images. For the diffusion model conditioned on
semantic segmentation maps, we replace the first layer of our pre-trained base 64 x 64 model and concatenate embeddings of
semantic segmentation maps and noised image inputs. We further finetune the diffusion model for another 100K iterations
conditioned on segmentation.

For experiments on LHQ [53] and LSUN [67] Tower, we train diffusion models from scratch with the U-net architecture
proposed in Dhariwal et al. [13]. Thanks to its success in LSUN and ImageNet [12], we adopt its hyperparameters for
LSUN dataset in [3, Table 11]. Due to limited computational resources, we train diffusion models with channel size 192
and batch size 128 for 100K iterations instead of the recommended hyperparameters. We follow the data preprocessing in
Skorokhodov et al. [53, Algorithm 1] with its official implementation >, which extracts a subset with approximately horizontally
invariant statistics from original datasets.

Thanks to the shift-invariant property of infinite images, we use the same diffusion model to fit both factor and variable
nodes, where the width of images over the variable node is half of the width of factor nodes. The dataset for variable nodes
consists of random cropped images from factor nodes. We list its training algorithm in Algorithm 6. We apply a similar
strategy to train segmentation-conditioned diffusion models. We adopt VESDE and preconditioners proposed in Karras et
al. [25] to train our diffusion models.

2https://gist.q;thub.corﬁ/uhiversome/BlliOf74058a48aa56a556b0d9e24e857

R Precision Multimodal

Method (top 3)1 FIDJ Dist|
Real data 0.798+0.002 0.001+0.000 2.960+0.006 9.471+0.100
MDM [59] 0.605+0.005 0.492+0.036 5.607+0.028 9.383+0.070
Baseline 0.2984+ 0.006 10.690 £0.179 7.5124+0.039 6.76440.069
Replacement 0.5674+0.008 1.281 £0.177 5.751+0.034 9.184+0.122
Reconstruction 0.585+ 0.007 1.012 £0.080 5.716+0.033 9.175+0.120
DiffCollage 0.611+0.004 0.605+0.082 5.5694+0.017 9.3724+0.109

Diversity—

Table 4. Performance on every metric is reported based on a mean and standard derivation of 20 independent evaluations.

Sampling Regarding sampling image diffusion models, we use the stochastic sampler in Karras et al. [25] with 80
sampling steps and default hyperparameters. We find stochastic samplers are slightly better than deterministic samplers in
DiffCollage. For quantitative comparison on our internal dataset, we have the same CLIP embedding for both factor and
variable nodes in one graph while we use unconditional generation on LHQ and LSUN Tower. We use the same sampler for
baseline and autoregressive methods based on replacement or reconstruction. To connect different styles and real images
with a linear chain graph, we interpolate conditional signals with spherical linear interpolation [62]. We find DiffCollage
with Algorithm 4 can produce satisfying samples for conditional generation efficiently. More visual examples are included
in Appendix E.

C.3. Motion experiments

We use the pre-trained diffusion model® from [59] and only make the following modifications during sampling.

* Similar to experiments in images, we inpaint motion sequences by masking 50% content in the sliding window for
Replacement and Reconstruction methods.

* All experiments employ the deterministic DDIM sampler [55] with 50 steps.

* We use the same prompt to denoise both factor and variables nodes for long motion experiments benchmark experiments
results and Tab. 4.

* To composite motions with multiple actions, we decompose the given long prompts into several short sentences manually
so that each sentence only consists of one or two actions similar to prompts in the training data. Then we assign each
factor y[f;] with one short prompt sequentially and unconditional null token for the variables node.

» Analogous to circle image generation, we add a factor node connected to the head and tail variable nodes in the factor
graph.

We include standard derivation for long motion experiments in Tab. 4.

D. Limitations

Despite the clear advantages that Di ffCollage has over traditional methods, DiffCollage is no silver bullet for
every large content generation problem. We discuss some limitations below.

Conditional independence assumptions. Since we use diffusion models trained on smaller pieces of the content,
DiffCollage place conditional independence assumptions over the joint distribution of the large content, similar to
autoregressive outpainting methods. Sometimes this assumption is reasonable (such as long images for landscape or “corgis
having dinner at a long table”), but there are cases where the long-range dependency is necessary for generating the content.
For example, generating a long image of a snake would be difficult with DiffCollage, since we drop the conditional
dependencies between the head and the tail of the snake, and it is possible that our snake would have two heads or two tails.
Part of this can be mitigated by providing global conditioning information, such as the segmentation maps in landscapes.

3h:tps://qithqb.com/Guervet/moticnfciffus;onfmodel

Memory footprint. We reduce the latency of the long content generation by running the diffusion model computations in
parallel, and it comes at a cost of using more peak memory than autoregressive methods.

Number of steps in the sampler. To ensure global consistency, information needs to flow through the factor graph. This
is done by the sum over the overlapping regions in each iteration, so it can be treated as some kind of “message passing”
behavior. Similar to “message passing”, many iterations may be needed if the graph diameter is large (even when some global
conditioning information is given). For example, for a linear chain with length L, we may need the sampler to run O(L) times
to get optimal results. Empirically we also find sampling with our method using very few steps in generating infinite images,
such as 35, may result in artifacts. However, we note that this is still much better than the autoregressive counterpart; for a
DiffCollage implementation that requires O(L) steps of iteration, the reconstruction/replacement methods would require
O(L x K) steps, where K is the number of iterations for the small diffusion models.

E. Additional samples

We include more high-quality samples and motion videos in our supplementary materials.

Recon Replace Baseline

, Our

Recon Replace Baseline

Our

Figure 10. More comparison.

Recon Masked _ Source

Ours

Figure 11. Inpainting on non-square images. The diffusion models based on smaller patches are run in parallel.

Figure 12. Inpainting on non-square images. The diffusion models based on smaller patches are run in parallel.

Figure 13. DiffCollage on generating long landscape images. Parts are being zoomed in for high-resolution details.

Figure 14. Baseline method on 360 cubemap image. (Left) Cubemap representation; (Right) Equirectangular representation; (Lower
middle) Semantic segmentation map used to condition the model. Even with a globally-consistent semantic segmentation map, individually
processing the patches will lead to the cube faces being quite inconsistent with one another.

Figure 15. DiffCollage on 360 cubemap image. (Left) Cubemap representation; (Right) Equirectangular representation; (Lower middle)
Semantic segmentation map used to condition the model. DiffCollage is able to “connect” the different faces and produce a globally
consistent 360 degree image.

Figure 16. DiffCollage on 360 cubemap image. (Left) Cubemap representation; (Right) Equirectangular representation; (Lower middle)
Semantic segmentation map used to condition the model.

