
Supplementary material for differentiable architecture search with random
features

1. Algorithm
We utilize the first-order approximation of DARTS for

the architecture gradient to accelerate the search stage. The
overall procedure of RF-DARTS is outlined in Alg. 1.

Algorithm 1 RF-DARTS: Differentiable Architecture
Search with Random Features
Require: Supernet weights wconv, wbn;

Architecture parameters α.
Ensure: Searched architecture parameters α.

1: Random initialize weights winit
conv;

2: while not converged do
3: Update α by descending ∇αLval(w

init
conv, wbn, α).

4: Update wbn by descending ∇wbnLtrain(w
init
conv, wbn, α).

5: end while

2. Experiment setting
2.1. Search space

NAS-Bench-201. The skeleton of NAS-Bench-201 [2]
supernet consists of four parts: 1) a stem layer, 2) three
stacked stages and each stage includes 5 search cells, 3) two
residual blocks with stride 2, 4) a global average pooling
layer and a classifier layer. The search cell is represented as
a densely-connected directed acyclic graph (DAG). There
are four nodes and six edges in the DAG. Each edges has
five candidate operations: (1) none, (2) skip-connection,
(3) 1×1 convolution, (4) 3×3 convolution and (5) 3×3 av-
erage pooling. With the assumption of shared cell topology,
there are total 15625 candidate architectures in the NAS-
Bench-201 search space.

DARTS search space. The main body of DARTS [4] su-
pernet consists of three parts: 1) a stem layer, 2) eight
stacked search cells, and 3) a global average pooling layer
and a classifier layer. Specifically, DARTS supernet in-
cludes two search cell types, namely normal cell and re-
duction cell. The reduction cells are located at 1/3 and 2/3
of the supernet depth, and the other search cells are called
normal cells. There are six nodes and fourteen edges in
both normal cells and reduction cells. Each edge has eight

candidate operations: (1) none, (2) 3×3 average pooling,
(3) 3×3 max pooling, (4) skip-connection, (5) 3×3 Sep-
Conv, (6) 5×5 SepConv, (7) 3×3 DilConv, (8) 5×5 Dil-
Conv. With the assumption of the shared normal cell and
reduction cell topology, there are total 1018 candidate ar-
chitectures in the DARTS search space. In search phase,
there are 8 search cells both on CIFAR and ImageNet. In
evaluation phase, the number of cell is increased from 8 to
20 on CIFAR, and is increased to 14 on ImageNet.

2.2. Datasets and training settings

CIFAR. CIFAR [3] consists of CIFAR-10 and CIFAR-
100. Both CIFAR-10 and CIFAR-100 contains 50K training
images and 10K test images. CIFAR-10 has 10 image cat-
egories and CIFAR-100 has 100 image categories. The im-
age resolution in CIFAR-10 and CIFAR-100 is 32×32. In
the search stage, the original training dataset is splitted into
training dataset and validation dataset with equal size. The
new training dataset is used to train supernet weights and
validation dataset is used to optimize architecture parame-
ters. We use similar search training setting in both NAS-
Bench-201 and DARTS search space as vanilla DARTS.
The number of training epochs is 50. We use SGD opti-
mizer with a cosine learning rate scheduler initialized with
0.025, a momentum of 0.9, a weight decay of 1e-3 (14e-4
in NAS-Bench-201) and a gradient clip of 5. We also use an
Adam optimizer with a constant learning rate 3e-4, a beta of
(0.5, 0.999), and a weight decay of 1e-3. There is no eval-
uation stage in NAS-Bench-201 because of the providing
ground truth accuracy. For the evaluation stage in DARTS
search space, we retrain searched architectures 600 epochs
on both CIFAR-10 and CIFAR-100. Besides, the depth of
searched architecture is increased from 8 to 20 and the num-
ber of initial channel is increased from 16 to 36. Other train-
ing settings keep the same as the ones of supernet weight
optimization in the search stage.

ImageNet. ImageNet-1K [1] consists of 1.28M training
images and 50K validation images. The image resolution
keeps a defaut setting with 224×224. We follow the search
and evaluation training settings provided in PC-DARTS [5].
The depth of DARTS supernet is also 8 cells. However,
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with limited GPU memory, the DARTS supernet use three
convolution layer with stride 2 to down-sample feature res-
olution from 224×224 to 28×28. In the search phase, data
subsets 10% and 2.5% of the images from each class are
randomly sampled from training dataset. The former (10%
of the training images) is used to train supernet weights and
the latter subset (5% of the training images) is used to op-
timize architecture parameters. We train supernet with 50
epochs. For the first 35 epochs, we only train BN affine
weights. Then, we jointly optimize BN affine weights and
architecture parameters in a iterative way. For BN affine
weights optimization, we use SGD optimizer with a cosine
learning rate scheduler initialized with 0.5, batch size 1024,
a momentum of 0.9, a weight decay of 1e-3 and a gradient
clip of 5. As for architecture parameters, we use an Adam
optimizer with a constant learning rate 6e-3, a beta of (0.5,
0.999), and a weight decay of 1e-3. After search, we build
the searched architecture with 14 cells and 48 initial chan-
nels. We evaluate the architecture with 250 training epochs
and a SGD optimizer with a momentum of 0.9, an initial
learning rate of 0.5 (decayed down to zero linearly), and a
weight decay of 3e-5. Label smoothing with confidence 0.9
and an auxiliary loss tower are adopted during training. We
warm-up learning rate for the first 5 epochs.

3. Visualization of architectures
Here we visualize the searched cell architectures: RF-

DARTS searched on CIFAR-10 (Figure 1), RF PCDARTS
searched on ImageNet-1K (Figure 2), and RF-DARTS
searched on CIFAR-10, CIFAR-100, and SVHN across Ro-
bustDARTS S1-S4 (Figure 3 to Figure 14).
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Figure 1. RF-DARTS searched on CIFAR-10
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Figure 2. RF-PCDARTS searched on ImageNet-1K
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Figure 3. RF-DARTS (S1) searched on CIFAR-10
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Figure 4. RF-DARTS (S2) searched on CIFAR-10
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Figure 5. RF-DARTS (S3) searched on CIFAR-10
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Figure 6. RF-DARTS (S4) searched on CIFAR-10
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Figure 7. RF-DARTS (S1) searched on CIFAR-100
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Figure 8. RF-DARTS (S2) searched on CIFAR-100
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Figure 9. RF-DARTS (S3) searched on CIFAR-100
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Figure 10. RF-DARTS (S4) searched on CIFAR-100
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Figure 11. RF-DARTS (S1) searched on SVHN
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Figure 12. RF-DARTS (S2) searched on SVHN
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Figure 13. RF-DARTS (S3) searched on SVHN
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Figure 14. RF-DARTS (S4) searched on SVHN
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