
Dimensionality-Varying Diffusion Process
– Supplementary Material –

Overview
This supplementary material is organized as follows. First, we will give proofs and derivations in Sec. A. In Sec. B, we

will give more details on the implementation of DVDP. In Sec. C, we will show that our DVDP can be further accelerated
with DDIM sampling method [5]. Then, we will demonstrate the compatibility with latent diffusion models [4] in Sec. D.
Finally, additional comparisons with subspace diffusion [2] will be given in Sec. E.

A. Proofs and Derivations
A.1. Details on the Forward Transition Kernel

Here we prove that the marginal distributions of each forward ADP given by Eqs. (5, 6) can be derived from the forward
transition kernel defined by Eq. (7). The proof uses the following basic property of Gaussians

z1 ∼ N (µ;Σ1), z2|z1 ∼ N (Az1;Σ2)⇒ z2 ∼ N (Aµ;AΣ1A
T +Σ2). (S1)

As a prerequisite, we first re-write the Gaussian transition kernel given by Eq. (7) as

xk
t |xk

t−1 ∼ N (UkΛk,tU
T
k xk

t−1;UkL
2
k,tU

T
k), 1 ≤ t ≤ T, 0 ≤ k ≤ K, (S2)

where
Λk,t = Λ̄−1

k,t−1Λ̄k,t,

Lk,t = (L̄2
k,t −Λ2

k,tL̄
2
k,t−1)

1/2.
(S3)

The marginal distributions given by Eqs. (5, 6) can also be re-written as

xk
t |xk

0 ∼ N (UkΛ̄k,tU
T
k xk

0 ;UkL̄
2
k,tU

T
k), 1 ≤ t ≤ T, 0 ≤ k ≤ K. (S4)

With Eqs. (S1) and (S2), we can prove Eq. (S4) by induction:

1. For t = 1, xk
1 |xk

0 ∼ N (UkΛk,1U
T
k xk

0 ;UkL
2
k,1U

T
k) is directly defined by Eq. (S2). It satisfies Eq. (S4) since Λk,1 =

Λ̄k,1 and Lk,1 = L̄k,1.

2. Suppose xk
t |xk

0 satisfies Eq. (S4). With the definition of xk
t+1|xk

t given by Eq. (S2) and the property Eq. (S1), xk
t+1|xk

0

can be derived as
xk
t+1|xk

0 ∼N (UkΛk,t+1Λ̄k,tU
T
k xk

0 ;Uk(Λ
2
k,t+1L̄

2
k,t +L2

k,t+1)U
T
k)

=N (UkΛ̄k,t+1U
T
k xk

0 ;UkL̄
2
k,t+1U

T
k),

(S5)

where the equality is due to Λ̄k,t+1 = Λk,t+1Λ̄k,t and L̄2
k,t+1 = Λ2

k,t+1L̄
2
k,t + L2

k,t+1 derived from Eq. (S3). Thus,
xk
t+1|xk

0 also satisfies Eq. (S4).

Thus, the proof is completed.

A.2. Derivation of q(xk
t−1|xk

t ,x
k
0)

Here we derive q(xk
t−1|xk

t ,x
k
0) from the marginal distribution given by Eqs. (5, 6) and the forward transition kernel given

by Eq. (7).
By the Bayes’ theorem, q(xk

t−1|xk
t ,x

k
0) ∝ q(xk

t−1|xk
0)q(x

k
t |xk

t−1,x
k
0) = q(xk

t−1|xk
0)q(x

k
t |xk

t−1), where the equality holds
because of the Markovian property of xk

0 → xk
1 · · · → xk

T . With q(xk
t−1|xk

0) and q(xk
t |xk

t−1) given by Eqs. (5) to (7), we
have

log q(xk
t−1|xk

t ,x
k
0) = log q(xk

t−1|xk
0) + log q(xk

t |xk
t−1) + C1

=− 1

2
(xk

t−1 −UkΛ̄k,t−1U
T
k xk

0)
TUkL̄

−2
k,t−1U

T
k (xk

t−1 −UkΛ̄k,t−1U
T
k xk

0)

− 1

2
(xk

t −UkΛk,tU
T
k xk

t−1)
TUkL

−2
k,tU

T
k (xk

t −UkΛk,tU
T
k xk

t−1) + C2

=− 1

2

[
xk
t−1

T
Uk(L̄

−2
k,t−1 +Λ2

k,tL
−2
k,t)U

T
k xk

t−1

− 2(UkΛ̄k,t−1L̄
−2
k,t−1U

T
k xk

0 +UkΛk,tL
−2
k,tU

T
k xk

t)
Txk

t−1

]
+ C3

=− 1

2

[
xk
t−1

T
UkL

−2
k,tL̄

−2
k,t−1L̄

2
k,tU

T
k xk

t−1

− 2(UkΛ̄k,t−1L̄
−2
k,t−1U

T
k xk

0 +UkΛk,tL
−2
k,tU

T
k xk

t)
Txk

t−1

]
+ C3

=− 1

2
(xk

t−1 − µ̃k,t)
T Σ̃−2

k,t(x
k
t−1 − µ̃k,t) + C4,

(S6)

where C1, C2, C3 and C4 are constants that do not depend on xk
t−1, and

µ̃k,t =µ̃k,t(x
k
t ,x

k
0) = UkΛ̄k,t−1L

2
k,tL̄

−2
k,tU

T
k xk

0 +UkΛk,tL̄
2
k,t−1L̄

−2
k,tU

T
k xk

t ,

Σ̃k,t =UkL
2
k,tL̄

2
k,t−1L̄

−2
k,tU

T
k .

(S7)

Thus, q(xk
t−1|xk

t ,x
k
0) = N (xk

t−1; µ̃k,t, Σ̃k,t).

A.3. Derivation of the Loss Function

Here we derive Eq. (12) from the variational bound on negative log-likelihood

Eq[− log pθ(x
0
0)] ≤Eq

[
− log

pθ(x
0
0:T1

,x1
T1:T2

, · · · ,xK
TK :T)

q(x0
1:T1

,x1
T1:T2

, · · · ,xK
TK :T |x0

0)

]

=Eq

[
− log

pθ(x
0
0|x0

1)pθ(x
0
1:T1

,x1
T1:T2

, · · · ,xK
TK :T−1|xK

T)pθ(x
K
T)

q(x0
1:T1

,x1
T1:T2

, · · · ,xK
TK :T−1|xK

T ,x0
0)q(x

K
T |x0

0)

]

=Eq

[
− log pθ(x

0
0|x0

1)−
K∑

k=0

Tk+1∑
t=Tk+1

t>1

log
pθ(x

k
t−1|xk

t)

q(xk
t−1|xk

t ,x
0
0)

−
K∑

k=1

log
pθ(x

k−1
Tk
|xk

Tk
)

q(xk−1
Tk
|xk

Tk
,x0

0)
− log

pθ(x
K
T)

q(xK
T |x0

0)

]

=Eq

[
− log pθ(x

0
0|x0

1)︸ ︷︷ ︸
L0

+

K∑
k=0

Tk+1∑
t=Tk+1

t>1

DKL(q(x
k
t−1|xk

t ,x
k
0)∥pθ(xk

t−1|xk
t))︸ ︷︷ ︸

Lt−1

+

K∑
k=1

DKL(q(x
k−1
Tk
|xk

Tk
,xk−1

0)∥pθ(xk−1
Tk
|xk

Tk
))︸ ︷︷ ︸

Ldown
k

+DKL(q(x
K
T |x0

0)∥pθ(xK
T))︸ ︷︷ ︸

LT

]
,

(S8)

where L0, LT and Lt−1 for t = 2, 3, · · · , T are similar with the definitions in DDPM [1], and Ldown
k is a new term which

can be viewed as the loss at the dimensionality turning point Tk. As defined in Eq. (11), pθ(xk−1
Tk
|xk

Tk
) has no learnable

parameters, so we do not optimize Ldown
k .

As for Lt−1, it is the KL divergence of two Gaussians and can be calculated as

Lt−1 = Eq

[
1

2
∥Σ−1/2

t UT
k (µ̃k,t(x

k
t ,x

k
0)− µθ(x

k
t , t))∥2

]
+ C, (S9)

where C is a constant that does not depend on θ, k is determined by t such that Tk < t ≤ Tk+1, µ̃k,t(x
k
t ,x

k
0) is the mean of

q(xk
t−1|xk

t ,x
k
0) given by Eq. (S7), and µθ is the mean of pθ(xk

t−1|xk
t) given by Eq. (10).

With Eqs. (5, 6), Lt−1 can be represented by reparameterization trick as

Lt−1 =Exk
0 ,ϵ

k

[
1

2

∥∥Σ−1/2
t UT

k (µ̃k,t(x
k
t (x

k
0 , ϵ

k),UkΛ̄
−1
k,tU

T
k xk

t (x
k
0 , ϵ

k)−UkΛ̄
−1
k,tL̄k,tU

T
k ϵk)

− µθ(x
k
t (x

k
0 , ϵ

k), t))
∥∥2]+ C

=Exk
0 ,ϵ

k

[∥∥Wt(ϵ
k − ϵθ(x

k
t (x

k
0 , ϵ

k), t))
∥∥2]+ C,

(S10)

where the final equality is obtained by plugging Eq. (10) and Eq. (S7) into it, and Wt =
1√
2
Σ

−1/2
t Λ−1

k,tL
2
k,tL̄

−1
k,tU

T
k .

Finally, by setting Wt = I , we can obtain Eq. (12), similar with the simplified training objective in DDPM [1].

A.4. Proof of Proposition 1

According to the inequality between JSD and total variation, we have

JSD(p1||p2) ≤
1

2

∫
|p1(x)− p2(x)|dx. (S11)

The RHS (right-hand side) of Eq. (S11) satisfies

1

2

∫
|p1(x)− p2(x)|dx =

1

2

∫
|Ex0∼p[p1(x|x0)− p2(x|x0)]| dx

≤1

2

∫
Ex0∼p [|p1(x|x0)− p2(x|x0)|] dx

=
1

2
C1

∫
Ex0∼p

[∣∣∣ exp (− 1

2
(x−A1x0)

TΣ−1(x−A1x0)
)

− exp
(
− 1

2
(x−A2x0)

TΣ−1(x−A2x0)
)∣∣∣]dx,

(S12)

where C1 = (2π)−d/2det(Σ)−1/2.
According to the mean value theorem, for each x0 and x, there exists θ = θ(x0,x) ∈ [0, 1] such that ξ = θ(x−A1x0)+

(1− θ)(x−A2x0) = x− [θA1 + (1− θ)A2]x0 satisfies

exp
(
− 1

2
(x−A1x0)

TΣ−1(x−A1x0)
)
− exp

(
− 1

2
(x−A2x0)

TΣ−1(x−A2x0)
)

=ξTΣ−1(A1 −A2)x0 exp
(
− 1

2
ξTΣ−1ξ

)
=F · exp

(
− 1

4
ξTΣ−1ξ

)
,

(S13)

where F = ξTΣ−1(A1 −A2)x0 exp
(
− 1

4ξ
TΣ−1ξ

)
, and |F | satisfies the following inequality

|F | =
∣∣∣ (Σ1/2ξ)T

∥Σ−1/2ξ∥2
Σ−1/2(A1 −A2)x0

∣∣∣ · ∥Σ−1/2ξ∥2 exp
(
− 1

4
∥Σ−1/2ξ∥22

)
≤C2∥Σ−1/2(A1 −A2)x0∥2
≤C2B∥Σ−1/2(A1 −A2)∥2,

(S14)

where C2 = maxa≥0 ae
− 1

4a
2

=
√
2e−

1
2 , and B is the upper bound of ∥x0∥2 as assumption.

Combining Eqs. (S12) to (S14), we have

1

2

∫
|p1(x)− p2(x)|dx ≤

1

2
C1C2B∥Σ−1/2(A1 −A2)∥2

∫
Ex0∼p

[
exp

(
− 1

4
ξTΣ−1ξ

)]
dx, (S15)

where ξ = x− [θA1 + (1− θ)A2]x0. Now we only need to prove that the RHS of Eq. (S15) ≤ the LHS (left-hand side) of
Eq. (13).

Let y = Σ−1/2[θA1 + (1− θ)A2]x0, then ξTΣ−1ξ = ∥Σ−1/2x− y∥22, and y satisfies

∥y∥2 =∥Σ−1/2[θA1 + (1− θ)A2]x0∥2
≤B∥Σ−1/2[θA1 + (1− θ)A2]∥2
≤B∥Σ−1/2A1∥2,

(S16)

where the last inequality is derived from the assumption that A1 ⪰ A2 ⪰ 0.
Let D = {x : ∥Σ−1/2x∥2 ≤ r}, where r = 2B∥Σ−1/2A1∥2, thus ∥y∥2 ≤ 1

2r according to Eq. (S16). Then the
integration in Eq. (S15) can be split into two regions as∫

Ex0∼p

[
exp

(
− 1

4
ξTΣ−1ξ

)]
dx =

∫
D
Ex0∼p

[
exp

(
− 1

4
∥Σ−1/2x− y∥22

)]
dx

+

∫
DC

Ex0∼p

[
exp

(
− 1

4
∥Σ−1/2x− y∥22

)]
dx

≤
∫
D
1dx+

∫
exp

(
− 1

16
∥Σ−1/2x∥22

)
dx

≤Vd(r)det(Σ)
1/2 + 2

√
2(2π)d/2det(Σ)1/2,

(S17)

where Vd(·) is the volume of d-dimensional sphere with respect to the radius.
Combining Eqs. (S11), (S15) and (S17), we can get Proposition 1.

A.5. Proof of Theorem 1

We first prove that q(xk−1
Tk

) and p(xk−1
Tk

) defined in Theorem 1 satisfy the conditions claimed in Proposition 1.
q(xk

Tk
) is the marginal distribution of q(xk

0)q(x
k
Tk
|xk

0) where q(xk
Tk
|xk

0) is defined by Eqs. (5, 6). q(xk
Tk
|xk

0) can also be
expressed as

q(xk
Tk
|xk

0) = N (xk
Tk
;UkΛ̄k,Tk

UT
k xk

0 ,UkL̄
2
k,Tk

UT
k). (S18)

Similarly, q(xk−1
Tk

) is the marginal distribution of q(xk−1
0)q(xk−1

Tk
|xk−1

0) where q(xk−1
Tk
|xk−1

0) can be expressed as

q(xk−1
Tk
|xk−1

0) = N (xk−1
Tk

;Uk−1Λ̄k−1,Tk
UT

k−1x
k−1
0 ,Uk−1L̄

2
k−1,Tk

UT
k−1). (S19)

By definition, p(xk−1
Tk

) is the marginal distribution of q(xk
Tk
)p(xk−1

Tk
|xk

Tk
), where p(xk−1

Tk
|xk

Tk
) is defined by Eq. (11) and

can be expressed as
p(xk−1

Tk
|xk

Tk
) = N (xk−1

Tk
;DT

k x
k
Tk
,Uk−1∆L2

k−1U
T
k−1). (S20)

To transform p(xk−1
Tk

) into the form in Proposition 1, we construct a Markov chain xk−1
0 → xk

Tk
→ xk−1

Tk
, where

xk−1
0 ∼ q(xk−1

0), xk
Tk
|xk−1

0 ∼ q(xk
Tk
|xk−1

0) = q(xk
Tk
|Dkx

k−1
0), and xk−1

Tk
|xk

Tk
∼ p(xk−1

Tk
|xk

Tk
). Thus p(xk−1

Tk
) is also

the marginal distribution of the joint distribution pm(x
k−1
0 ,xk−1

Tk
) defined by the Markov chain. This joint distribution

can be factorized as pm(x
k−1
0 ,xk−1

Tk
) = q(xk−1

0)pm(x
k−1
Tk
|xk−1

0), where pm(x
k−1
Tk
|xk−1

0) is the marginal distribution of
q(xk

Tk
|xk−1

0)p(xk−1
Tk
|xk

Tk
), and can be derived from Eqs. (S18) and (S20) by using Eq. (S1)

pm(x
k−1
Tk
|xk−1

0) =N (xk−1
Tk

;DT
k UkΛ̄k,Tk

UT
k Dkx

k−1
0 , Uk−1∆L2

k−1U
T
k−1 +DT

k UkL̄
2
k,Tk

UT
k Dk)

=N (xk−1
Tk

;Uk−1(Λ̄k−1,Tk
−∆Λk−1)U

T
k−1x

k−1
0 , Uk−1L̄

2
k−1,Tk

UT
k−1),

(S21)

where ∆Λk−1 = diag(λ̄k−1,Tk
Idk−1

,Od̄k
).

Thus, q(xk−1
Tk
|xk−1

0) given by Eq. (S19) and pm(x
k−1
Tk
|xk−1

0) given by Eq. (S21) satisfy conditions of p1(x|x0) and
p2(x|x0) claimed in Proposition 1 respectively. And ∥xk−1

0 ∥ satisfies

∥xk−1
0 ∥ = ∥Dk−1x

0
0∥ ≤ ∥x0

0∥ ≤
√
d. (S22)

Finally, substituting all corresponding variables into Eq. (13), we can obtain Eq. (14).

B. Implementation Details
In this section, we will give more details on the implementation of our DVDP. Algorithms 1 and 2 display the complete

training and sampling procedures respectively.

Algorithm 1 Training
1: repeat
2: k ∼ Uniform({0, · · · ,K})
3: t ∼ Uniform({Tk + 1, · · · , Tk+1})
4: x0

0 ∼ q(x0
0)

5: ϵk ∼ N (0; Id̄k
)

6: xk
0 ← Dkx

0
0

7: xk
t ← UkΛ̄k,tU

T
k xk

0 +UkL̄k,tU
T
k ϵk

8: Take gradient descent step on
∇θ∥ϵk − ϵθ(x

k
t , t)∥2

9: until converged

Algorithm 2 Sampling

1: xK
T ∼ N (0; Id̄K

)
2: for k = K, · · · , 0 do
3: for t = Tk+1, · · · , Tk + 1 do
4: ϵk ∼ N (0; Id̄k

)

5: xk
t−1 ← UkΛ̄

−1
k,t(U

T
k xk

t − L̄k,tU
T
k ϵθ(x

k
t , t)) +Σtϵ

k

6: if k > 0 then
7: ϵk−1 ∼ N (0; Id̄k−1

)

8: xk−1
Tk
← DT

k x
k
Tk

+Uk−1∆Lk−1U
T
k−1ϵ

k−1

9: return x0
0

B.1. Choice of Downsampling Operator Dk

Since an image pixel is usually similar with its neighbours, we can simply choose Dk to be a 2 × 2 average-pooling
operator for each k = 1, · · · ,K as in subspace diffusion [2] to maintain the main component of an image. Under this choice,
the dimensionality will be reduced from d̄k−1 to d̄k = 1

4 d̄k−1 after each downsampling operation, as mentioned in Sec. 5.1.
The above choice needs a simple modification, multiplication by 2 after the average-pooling operation, to ensure that the

matrix Dk satisfies
Dk[Nk−1,Pk−1] = [Od̄k

,Uk], (S23)

where Nk−1 ∈ Rd̄k−1×dk−1 and Pk−1 ∈ Rd̄k−1×d̄k satisfies Uk−1 = [Nk−1,Pk−1]. Under this condition, the matrix
Dk ∈ Rd̄k×d̄k−1 is row-orthogonal, and DT

k (i.e., the transpose of Dk) is just the corresponding upsampling operator.

B.2. Attenuation Coefficient λ̄k,t

0.00 0.25 0.50 0.75 1.00
τ

0.25

0.50

0.75

1.00

g k
(τ

)

exp
linear
cosine

Figure S1. gk(·) on [0, 1] for k < K.

Algorithm 3 Adaptation on Noise Schedule

1: Initialize ᾱ0, · · · ᾱT as in DDPM
2: for t = 0, · · · , T do
3: σ̄t ←

√
1/ᾱt − 1

4: for k = 1, · · · ,K do
5: for t = Tk + 1, · · · , T do
6: σ̄t ← σ̄Tk

+ 2(σ̄t − σ̄Tk
)

As mentioned in Sec. 4.1, among λ̄0,t, λ̄1,t, · · · , λ̄K,t, only λ̄k,t is required to approximate zero at dimensionality turning
point Tk+1 for k < K. Thus we only need to decrease λ̄k,t when Tk < t ≤ Tk+1. Hence, λ̄k,t can be set in the following
manner for k < K:

λ̄k,t =

1, t ≤ Tk

λ̄min, t > Tk+1

gk(
t−Tk

Tk+1−Tk
), Tk < t ≤ Tk+1,

(S24)

where λ̄min ∈ (0, 1) is a shared hyperparameter for λ̄0,t, λ̄1,t, · · · , λ̄K−1,t, and gk(·) is a continuous decreasing function on
the interval [0, 1] such that gk(0) = 1 and gk(1) = λ̄min. For all experiments, we set λ̄min = 0.01. As for k = K, we

set λ̄K,t = 1 for all t. This schedule means that between two adjacent dimensionality turning points Tk and Tk+1, we only
attenuate one data component vk

k . Once we have λ̄k,t for each k and t, matrices Λ̄k,t and Λk,t are determined.
To determine gk(·), we try exp, linear and cosine, 3 different functions as shown in Fig. S1, with T0 = 300 and T1 = 600

on CelebA 64. The FIDs are 3.98, 4.25 and 4.31 respectively, while the baseline case, i.e., λ̄min = 1 without attenuation,
achieves 4.99. Although all three attenuation functions outperform baseline, we choose the best-performing exp for all other
experiments. Specifically, we set gk(τ) = (λ̄min)

τ for τ ∈ [0, 1].

B.3. Noise Schedule σ̄k,t

Recall that σ̄k,t denotes the standard deviation of noise component z0k defined in Eq. (5). To determine σ̄k,t for all
k = 0, 1, · · · ,K, it is equivalent to determine the matrix L̄0,t = diag(σ̄0,tId0

, σ̄1,tId1
, · · · , σ̄K,tIdK

). Note that L̄0,t

for all t = 1, 2, · · · , T can be uniquely determined by L̄0,t = (L2
0,t +Λ2

0,tL̄
2
0,t−1)

1/2, which is derived from the definition
of L0,t under Eq. (7), once we know Λ0,t, L0,t for all t > 0 (initial L̄0,t = Od̄0

). Thus, we can equivalently design L0,t

instead of directly setting L̄0,t.
For simplicity, we can set L0,t = σtId̄0

as a diagonal matrix, which means that the added noise at each forward diffusion

step is symmetric, similar with that in DDPM [1]. Rather than setting σt directly, we first determine σ̄t =
√∑t

s=1 σ
2
s , then

obtain σt by σt =
√

σ̄2
t − σ̄2

t−1. In fact, σ̄t = σ̄t,K , i.e., the standard deviation of noise component z0K in the smallest
subspace SK , in which no attenuation is applied. Thus, σ̄t determines the signal-to-noise ratio (SNR) when TK < t ≤ T ,
accompanied by data distribution and the choice of SK . Given our choice of Dk in Sec. B.1, subspace SK contains the
main component of an image, but only small parts of a Gaussian noise. We can approximately define the SNR as 2K/σ̄T at
timestep T after K times downsampling.

For diffusion models, small SNR at timestep T is a key ingredient for high quality samples, which ensures that the noisy
data can be well approximated by a Gaussian noise. Here, we choose to mimic the SNR schedule in DDPM [1], and this
requires to adjust the sequence of σ̄t to approximately compensate the factor 2K in SNR. The noise adaptation algorithm is
given in Algorithm 3.

B.4. Simplification of Matrix Multiplication UkGkU
T
k

With the above choices of attenuation coefficients and noise schedule, all matrix multiplications with the form of UkGkU
T
k

in the implementation of DVDP can be expressed by downsampling operatorDk+1 and upsampling operatorDT
k+1, since each

diagonal matrix Gk only includes two different elements and can be expressed in the form of G = diag(akIdk
, bkId̄k+1

).
Thus, UkGkU

T
k can be expressed as

UkGkU
T
k =[Nk,Pk]

[
akIdk

0
0 bkId̄k+1

]
[Nk,Pk]

T

=akId̄k
+ [Nk,Pk]

[
0 0
0 (bk − ak)Id̄k+1

]
[Nk,Pk]

T

=akId̄k
+ (bk − ak)PkP

T
k

=akId̄k
+ (bk − ak)DT

k+1Dk+1,

(S25)

where the last equality can be derived from Eq. (S23).

B.5. Hyperparameters

Hyperparameters for training DVDP models are in Tab. S1. We train all of our models using AdamW [3] with β1 = 0.9
and β2 = 0.999. We use EMA for all experiments with a decay factor of 0.9999. A single NVIDIA A100 is used for all
experiments, except FFHQ 1024 with two A100s.

C. Experiments on DDIM Sampling
To demonstrate that our DVDP is compatible with DDIM [5], an accelerated sampling method, we apply DDIM to our

models trained on LSUN Church 256× 256 and FFQH 256× 256. The results are shown in Tab. S2. In experiment, we find
that it is beneficial for DVDP to add noises in some middle steps of sampling, unlike DDIM that sets all inserted noises to
zeros. Specifically, we set ηt = 1 for t = T1 − ⌊T1/4⌋, · · · , T1 + ⌈(T2 − T1)/2⌉ and ηt = 0 otherwise, where ηt ∈ [0, 1]
controls the strength of added noise as in DDIM [5] for timestep t. This adaption is marked by ∗ in Tab. S2.

Table S1. Hyperparameters for our DVDP models. ∗We used 1500K iterations for FFHQ 256, 1200K for LSUN church, and 1600K for
both LSUN bedroom and cat.

CIFAR 32 FFHQ & LSUN 256 FFHQ 1024
Model size 40M 125M 105M
Channels 128 128 128
Depth 2 2 2
Channel multi. 1,2,2,2 1,1,2,2,4,4 1,1,2,2,3,4
Head channels 64 64 64
Attention scale 1/2 1/16 1/16
Dropout 0.1 0 0
Batch size 128 24 8
Iterations 400K vary by datasets∗ 1000K
Learning rate 2e-4 1e-4 1e-4

Table S2. Quantitative comparison measured in FID. DDIM∗ denotes an adapted DDIM sampling method.

Dataset Church 256× 256 FFHQ 256× 256
#Steps 50 100 200 50 100 200

DDIM Baseline 10.44 10.22 10.26 12.32 10.80 10.19
DDIM∗ Baseline 9.36 8.91 9.03 13.33 10.28 9.06
DDIM∗ DVDP 8.52 7.33 7.32 12.01 8.39 7.04

Table S3. Combination with latent diffusion model
(LDM) on FFHQ 256, where K denotes downsampling
times.

Method FID ↓ Acc ↑
LDM 4.98 -
Comb. (K = 1) 4.55 1.39×
Comb. (K = 2) 5.12 1.90×

Table S4. Comparison with subspace diffusion model (SDM) measured in
FID, where ∗ indicates the same noise schedule as in conventional diffusion
without noise schedule adaptation in Algorithm 3.

Method CelebA 64 Church 128 Bedroom 128
SDM∗ 5.26 6.86 5.21
SDM 4.99 6.74 5.42
Ours 3.98 5.62 4.88

D. Combination with Latent Diffusion Models
The latent diffusion model (LDM) [4], which carries out the diffusion process at a latent space instead of the image space,

can speed up both training and sampling like our DVDP. However, DVDP is compatible with it and can realize further
acceleration. Tab. S3 gives the performance of combining DVDP with LDM on FFHQ 256 with official configuration. The
combined models are finetuned from the official model weight.

E. Comparison with Subsapce Diffusion
We compare DVDP with subspace diffusion model (SDM) [2] on a few additional datasets with K = 2. Note that the

two alternatives share the same efficiency. For a fair comparison, we train each SDM with a single network like our DVDP,
instead of using different models for different stages as in [2]. Tab. S4 suggests that DVDP outperforms SDM on all these
datasets.

References
[1] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Adv. Neural Inform. Process. Syst., pages

6840–6851, 2020. 2, 3, 6
[2] Bowen Jing, Gabriele Corso, Renato Berlinghieri, and Tommi Jaakkola. Subspace diffusion generative models. ArXiv:2205.01490,

2022. 1, 5, 7
[3] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. ArXiv:1711.05101, 2017. 6
[4] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent

diffusion models. In IEEE Conf. Comput. Vis. Pattern Recog., pages 10684–10695, 2022. 1, 7
[5] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. Int. Conf. Learn. Represent., 2021. 1, 6

