Efficient RGB-T Tracking via Cross-Modality Distillation

1. Attribute-based performance

We further analyze the attribute-based performance on
RGBT234 [4] and LasHeR [6] dataset.

1.1. RGBT234 dataset

RGBT234 [4] is a large-scale RGB-T tracking dataset.
It contains 12 challenge attribute labels, including no
occlusion (NO), partial occlusion (PO), heavy occlusion
(HO), low illumination (LI), low resolution (LR), thermal
crossover (TC), deformation (DEF), fast motion (FM), scale
variation (SV), motion blur (MB), camera moving (CM)
and background clutter (BC).

As shown in Table 1, we analyze the attribute-based per-
formance on RGBT234. For clarity, we only illustrate the
four re-trained trackers and another four advanced trackers,
i.e., IMMAC [11], M5L [7], CAT [5] and MANet++ [12].
From the results, we can see that our proposed method still
performs well in most annotated attributions. Compared
with such trackers based on MDNet (i.e., M5L [7], CAT [5],
MANet++ [12], DAFNet [2] and FANet [14]), our method
has remarkable improvements in case of PO, LI, DEF and
SV. Compared with mfDiMP [10], which is based on DiMP
[1] and employs two ResNet50 [3] for feature extraction,
our algorithm achieves competitive performance but signif-
icantly reduce parameters.

1.2. LasHeR dataset

LasHeR [6] is currently the largest RGB-T tracking
dataset. In addition to such challenges in RGBT234,
LasHeR contains more challenges, including total occlu-
sion (TO), hyaline occlusion (HO), high illumination (HI),
abrupt illumination variation (AIV), similar appearance
(SA), aspect ratio change(ARC), out-of-view (OV) and
frame lost (FL).

As shown in Table 2, we further analyze the attribute-
based performance on LasHeR. The results of our proposed
method and some other state-of-the-art trackers, includ-
ing MANet [8], DAPNet [13], DAFNet [2], MACNet [9],
CAT [5], mfDiMP [10], FANet [14] and MANet++ [12],
demonstrate that the our method performs the best under the
most challenging conditions. First, in adverse lighting con-
ditions, thermal crossover and low resolution, our method
outperforms all other trackers. This demonstrates that the

proposed method can enable such a compact model to fully
explore the complementary information within multi-modal
images. Second, our framework is robust to significant
appearance changes, such as deformation, scale variation,
camera moving and similar appearance. Finally, our model
struggles to handle the out of view challenge and hyaline
occlusion challange. It may be due to the fact that student
model can not learn effective information from the teacher
model when targets are invisible.
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Table 1. Attribute-based precision rate and success rate (PR/SR) scores obtained by using different trackers on RGBT234 dataset. The
numbers with red colors indicate the best results.

Trackers | IMMAC [11]  MS5L[7] CAT [5] MANet++[12]  MANet [8] DAFNet [2]  FANet [14] mfDiMP [10] | Student-Distill
Pub. Info. TIP2021 TIP2022 ECCV2020 TIP2021 ICCVW2019 ICCVW2019  TIV2021 ICCVW2019 2023
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HO 67.7/48.3 66.5/45.0  70.4/47.1 70.0/48.0 67.6/46.9 68.7/47.0 68.9/47.0 72.1/49.4 71.7149.5
LI 84.0/58.8 82.1/54.7  81.1/55.1 81.0/54.7 75.9/52.7 80.5/54.1 81.5/54.6 85.5/60.7 88.3/61.7
LR 84.0/58.8 82.3/53.5  82.3/54.5 82.0/53.9 78.7/51.8 79.3/51.1 81.0/50.7 76.2/50.1 73.7/48.1
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BC 68.7/48.5 75.0/47.7  76.7/149.1 81.1/51.9 74.4/49.3 74.0/47.5 76.9/48.4 77.5/50.8 80.6/53.0
ALL 79.0/57.3 79.5/542  80.0/55.4 80.4/56.1 78.6/55.5 80.0/54.9 79.4/53.9 82.4/58.3 82.4/58.4

Table 2. Attribute-based precision rate and success rate (PR/SR) scores obtained by using different trackers on LasHeR dataset. The
numbers with red colors indicate the best results.
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