
Efficient RGB-T Tracking via Cross-Modality Distillation

1. Attribute-based performance
We further analyze the attribute-based performance on

RGBT234 [4] and LasHeR [6] dataset.

1.1. RGBT234 dataset

RGBT234 [4] is a large-scale RGB-T tracking dataset.

It contains 12 challenge attribute labels, including no

occlusion (NO), partial occlusion (PO), heavy occlusion

(HO), low illumination (LI), low resolution (LR), thermal

crossover (TC), deformation (DEF), fast motion (FM), scale

variation (SV), motion blur (MB), camera moving (CM)

and background clutter (BC).

As shown in Table 1, we analyze the attribute-based per-

formance on RGBT234. For clarity, we only illustrate the

four re-trained trackers and another four advanced trackers,

i.e., JMMAC [11], M5L [7], CAT [5] and MANet++ [12].

From the results, we can see that our proposed method still

performs well in most annotated attributions. Compared

with such trackers based on MDNet (i.e., M5L [7], CAT [5],

MANet++ [12], DAFNet [2] and FANet [14]), our method

has remarkable improvements in case of PO, LI, DEF and

SV. Compared with mfDiMP [10], which is based on DiMP

[1] and employs two ResNet50 [3] for feature extraction,

our algorithm achieves competitive performance but signif-

icantly reduce parameters.

1.2. LasHeR dataset

LasHeR [6] is currently the largest RGB-T tracking

dataset. In addition to such challenges in RGBT234,

LasHeR contains more challenges, including total occlu-

sion (TO), hyaline occlusion (HO), high illumination (HI),

abrupt illumination variation (AIV), similar appearance

(SA), aspect ratio change(ARC), out-of-view (OV) and

frame lost (FL).

As shown in Table 2, we further analyze the attribute-

based performance on LasHeR. The results of our proposed

method and some other state-of-the-art trackers, includ-

ing MANet [8], DAPNet [13], DAFNet [2], MACNet [9],

CAT [5], mfDiMP [10], FANet [14] and MANet++ [12],

demonstrate that the our method performs the best under the

most challenging conditions. First, in adverse lighting con-

ditions, thermal crossover and low resolution, our method

outperforms all other trackers. This demonstrates that the

proposed method can enable such a compact model to fully

explore the complementary information within multi-modal

images. Second, our framework is robust to significant

appearance changes, such as deformation, scale variation,

camera moving and similar appearance. Finally, our model

struggles to handle the out of view challenge and hyaline

occlusion challange. It may be due to the fact that student

model can not learn effective information from the teacher

model when targets are invisible.
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Table 1. Attribute-based precision rate and success rate (PR/SR) scores obtained by using different trackers on RGBT234 dataset. The

numbers with red colors indicate the best results.

Trackers JMMAC [11] M5L [7] CAT [5] MANet++ [12] MANet [8] DAFNet [2] FANet [14] mfDiMP [10] Student-Distill

Pub. Info. TIP2021 TIP2022 ECCV2020 TIP2021 ICCVW2019 ICCVW2019 TIV2021 ICCVW2019 2023

NO 93.2/69.4 93.1/64.6 89.8/65.4 93.2/66.8 91.4/66.6 91.4/63.8 93.1/63.4 92.6/68.7 90.4/65.7

PO 84.1/61.1 86.3/58.9 85.2/59.3 85.1/59.3 83.9/59.1 86.1/58.7 83.9/56.6 88.2/62.7 89.6/64.1

HO 67.7/48.3 66.5/45.0 70.4/47.1 70.0/48.0 67.6/46.9 68.7/47.0 68.9/47.0 72.1/49.4 71.7/49.5

LI 84.0/58.8 82.1/54.7 81.1/55.1 81.0/54.7 75.9/52.7 80.5/54.1 81.5/54.6 85.5/60.7 88.3/61.7

LR 84.0/58.8 82.3/53.5 82.3/54.5 82.0/53.9 78.7/51.8 79.3/51.1 81.0/50.7 76.2/50.1 73.7/48.1

TC 74.9/52.6 82.1/56.4 80.3/57.6 80.3/57.6 75.0/54.3 77.9/54.6 76.9/52.8 79.8/55.5 75.8/51.2

DEF 70.6/51 9 73.6/51.1 75.3/53.5 76.2/54.1 73.6/53.5 75.1/53.2 75.4/53.5 81.6/59.6 82.7/60.9

FM 61.0/41.7 72.8/49.5 70.0/45.3 73.1/47.0 71.3/46.4 69.1/45.6 68.6/44.4 76.5/54.3 72.5/52.2

SV 83.7/61.6 79.6/54.2 78.9/55.4 79.7/56.6 78.6/56.2 82.1/56.7 80.0/54.8 84.0/60.8 84.5/61.3

MB 75.1/54.9 73.8/52.8 72.0/51.1 68.3/49.0 70.3/51.1 72.1/50.4 73.3/51.5 77.5/55.4 74.9/53.5

CM 76.2/55.6 75.2/52.9 74.7/52.3 75.2/52.7 69.7/50.9 74.3/53.2 73.6/53.2 81.5/58.9 80.2/58.0

BC 68.7/48.5 75.0/47.7 76.7/49.1 81.1/51.9 74.4/49.3 74.0/47.5 76.9/48.4 77.5/50.8 80.6/53.0

ALL 79.0/57.3 79.5/54.2 80.0/55.4 80.4/56.1 78.6/55.5 80.0/54.9 79.4/53.9 82.4/58.3 82.4/58.4

Table 2. Attribute-based precision rate and success rate (PR/SR) scores obtained by using different trackers on LasHeR dataset. The

numbers with red colors indicate the best results.

DAPNet [13] MANet [8] MaCNet [9] CAT [5] MANet++ [12] DAFNet∗ [2] FANet∗ [14] mfDiMP∗ [10] Student-Distill

Pub. Info. ACM MM2019 ICCVW2019 Sensors2020 ECCV2020 TIP2021 ICCVW2019 TIV2021 ICCVW2019 2023

NO 69.8/47.9 67.2/46.3 74.0/51.7 65.4/43.0 63.6/40.7 66.2/46.2 70.2/47.6 81.3/64.3 85.2/66.0

PO 39.1/29.1 42.4/30.7 44.6/32.8 41.8/29.5 44.0/30.1 44.9/29.3 44.9/32.2 54.8/42.8 55.3/44.6

TO 32.5/24.5 35.0/26.0 38.6/29.2 36.1/26.0 35.4/25.4 36.0/27.2 39.4/28.6 47.7/37.0 48.7/40.1

HO 22.0/22.3 24.1/23.6 28.1/29.1 22.6/23.4 24.5/24.4 22.1/24.1 20.5/21.1 51.2/45.2 46.7/44.0

OV 33.9/31.3 32.1/34.9 34.8/36.7 26.0/23.0 28.0/22.0 45.2/37.3 25.7/24.4 57.1/49.8 45.2/40.7

LI 31.7/24.0 35.6/26.9 36.0/26.7 31.5/22.6 35.8/24.0 37.1/26.2 39.6/28.8 45.4/36.5 47.1/37.6

HI 51.3/35.3 47.3/34.4 52.0/37.4 52.5/35.7 53.3/34.7 52.2/34.7 53.7/36.2 67.8/52.6 65.6/53.7

AIV 16.2/12.6 14.5/14.8 17.3/15.6 22.6/19.0 18.8/15.8 17.2/14.8 19.7/16.8 31.7/29.3 38.8/34.0

LR 38.9/25.2 45.8/28.5 43.9/28.0 42.4/25.2 47.4/26.8 44.2/27.9 45.5/27.7 48.7/34.5 50.3/35.3

DEF 40.9/32.8 37.4/32.1 41.4/34.0 38.3/30.6 39.4/30.8 45.9/36.4 46.4/37.3 59.3/47.1 59.0/48.1

BC 35.8/28.1 38.3/30.2 42.2/31.9 39.8/29.8 43.6/31.4 42.9/32.9 41.2/30.7 52.0/40.3 53.6/42.3

SA 35.1/26.6 38.0/27.9 40.8/30.4 37.426.5 41.1/27.9 41.0/30.2 39.9/29.0 50.5/39.5 49.4/39.3

TC 36.0/26.1 38.6/27.3 39.8/28.7 37.0/26.2 40.1/26.8 40.7/29.0 41.8/29.1 50.7/38.8 51.6/40.1

MB 32.4/26.2 38.9/27.9 40.4/29.8 39.8/26.6 39.7/26.6 38.1/27.2 41.5/28.5 49.7/38.5 50.4/39.2

CM 38.7/28.8 42.8/31.2 46.7/33.9 41.9/29.4 42.2/29.4 44.8/32.6 44.3/32.1 56.2/43.0 56.8/44.2

FL 33.1/22.0 30.2/19.4 34.6/22.2 38.7/22.6 37.8/21.6 33.7/27.0 35.3/25.8 49.1/38.4 51.6/40.2

FM 37.8/28.9 41.0/30.6 43.7/33.0 39.9/29.1 41.1/28.9 44.1/32.5 43.5/31.9 57.1/45.0 56.9/45.2

SV 43.4/31.4 46.0/32.9 48.0/34.8 44.4/30.7 46.4/31.1 47.4/34.0 48.0/34.1 58.5/45.9 59.2/46.8

ARC 32.9/26.3 35.6/27.0 36.0/28.5 32.5/24.4 35.5/25.7 34/26.8 35.5/27.2 52.6/42.5 53.9/43.9

ALL 43.1/31.4 45.5/32.6 48.2/35.0 45.0/31.4 46.7/31.4 48.0/34.5 44.1/34.3 58.3/45.6 59.0/46.4
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