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A. Proof of Theorems

A.1. Technical Lemmas

Lemma 1. If we have ED̂(θ) =
∑M

i=1 aiED̂i
(θ), then for

any domain T , we have:

dH∆H(D̂, T ) =

M∑
i=1

aidH∆H(D̂i, T ) (1)

Proof. From the definition of dH∆H(·, ·) in [1], we can get

dH∆H(D̂, T ) =2 sup
A∈AH∆H

|PrD̂(A)− PrT (A)|

=2 sup
A∈AH∆H

∣∣∣∣∣
M∑
i=1

aiPrD̂i
(A)− PrT (A)

∣∣∣∣∣
=2 sup

A∈AH∆H

∣∣∣∣∣
M∑
i=1

ai(PrD̂i
(A)− PrT (A))

∣∣∣∣∣
≤2 sup

A∈AH∆H

M∑
i=1

ai|PrD̂i
(A)− PrT (A)|

≤2

M∑
i=1

ai sup
A∈AH∆H

|PrD̂i
(A)− PrT (A)|

=

M∑
i=1

aidH∆H(D̂i, T ).

Lemma 2. For any θ ∈ Θ, the expectation risk gap be-
tween domain A and domain B is bounded by the domain
divergence dH∆H(A,B).

|EA(θ)− EB(θ)| ≤
1

2
dH∆H(A,B). (2)

Proof. By the definition of dH∆H(·, ·) in [1], we have

dH∆H(A,B) =2 sup
θ,θ′∈Θ

|Prx∼A[f(x; θ) ̸= f(x; θ′)]

− Prx∼B [f(x; θ) ̸= f(x; θ′)]|

where f(x; θ) means the prediction function on data x with
model parameter θ. We choose θ′ as parameter of the label
function, then f(x; θ) ̸= f(x; θ′) means the loss function
L(x; θ), so we have

dH∆H(A,B) ≥ 2 sup
θ∈Θ

|Prx∼A[L(x; θ)]− Prx∼B [L(x; θ)]|

≥ 2|EA(θ)− EB(θ)|

Lemma 3. Let H be the hypothesis space and Θ is the cor-
responding parameter space, the VC dimension of H is d.
The domain divergence between two domains Di and Dj

on hypothesis space H is denoted by dH∆H(Di, Dj). Then
for any δ ∈ (0, 1), with probability at least 1− δ, ∀θ ∈ Θ:

ET (θ) ≤
M∑
i=1

ai

(
ÊD̂i

(θ) +
1

2
dH∆H(D̂i, T )

+

√
log d+ log 1/δ

2Ni

)
+ λ,

(3)

where λ is the optimal combined risk on T and D̂ that can
be achieved by the parameters in Θ.

Proof. From the Theorem 2 in [1], we ignore the estimation
error from dH∆H and d̂H∆H, and have the generalization
bound for domain T and D̂ with the probability at least 1−
δ:

ET (θ) ≤ ED̂(θ) +
1

2
dH∆H(D̂, T ) + λ. (4)
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And we have ED̂(θ) =
∑M

i=1 aiED̂i
(θ) and Lemma 1, then

Eq. (4) can be rewritten as the following inequality.

ET (θ) ≤
M∑
i=1

aiED̂i
(θ) +

1

2

M∑
i=1

aidH∆H(D̂i, T ) + λ.

≤
M∑
i=1

ai

(
ÊD̂i

(θ) +

√
log d+ log 1/δ

2Ni

+
1

2
dH∆H(D̂i, T )

)
+ λ.

The second inequality considers the generalization bound
between ED̂i

(θ) and ÊD̂i
(θ) on each domain.

A.2. Proof of Theorem 1

Theorem 1. Let θ denote the global model after R round
federated learning, θ∗i and θ∗T mean the local optimal for
each source domain and the unseen target domain, respec-
tively. For any δ ∈ (0, 1), the domain generalization gap
for the unseen domain T can be bounded by the following
equation with a probability of at least 1− δ.

ET (θ)− ET (θ∗T ) ≤
M∑
i=1

ai

(
GD̂i

(θ) + dH∆H(D̂i, T )

+

√
log d

δ +
√
log Md

δ√
2Ni

)
+ λ

(5)

Proof. For a given θ ∈ Θ, with the definition of generaliza-
tion bound, the following inequality holds with at most δ

M

for each domain D̂i. (M is the number of domains)

ÊD̂i
(θ)− ED̂i

(θ) >

√
log d+ logM/δ

2Ni
(6)

Moreover, from Lemma 2, we have ED̂i
(θ) − ET (θ) ≤

1
2dH∆H(D̂i, T ) for each domain. Then let us consider Eq.
(6), we can obtain the following inequalities with the prob-
ability at least greater that 1− δ

M .

min
θ′

ÊD̂i
(θ′) ≤ ÊD̂i

(θ) ≤ ED̂i
(θ) +

√
log d+ logM/δ

2Ni

≤ ET (θ)+
1

2
dH∆H(D̂i, T ) +

√
log d+ logM/δ

2Ni

We denote the local optimal on each source domain i as θ∗i .
If we choose a specific parameter θ∗T = minθ Et(θ) which is
the local optimal on the unseen domain T , the above third

inequality still holds. Then we can rewrite the above in-
equalities into:

ÊD̂i
(θ∗i ) ≤ ET (θ∗T )+

1

2
dH∆H(D̂i, T )+

√
log d+ logM/δ

2Ni

(7)
Considering on each domain, Eq. (7) holds. By a similar

derivation process, we can obtain the inequality between T
and D̂ with the probability at least greater that 1− δ.

M∑
i=1

aiÊD̂i
(θ∗i ) ≤ ET (θ∗T ) +

M∑
i=1

ai

(
1

2
dH∆H(D̂i, T )

+

√
log d+ logM/δ

2Ni

) (8)

Combining the Eq.(8) and Lemma 3, we have Theorem
1 with the global model θ after federated learning.

ET (θ)− ET (θ∗T ) ≤
M∑
i=1

ai

(
ÊD̂i

(θ)− ÊD̂i
(θ∗i ) + dH∆H(D̂i, T )

+

√
log d

δ +
√
log Md

δ√
2Ni

)
+ λ

=

M∑
i=1

ai

(
GD̂i

(θ) + dH∆H(D̂i, T )

+

√
log d

δ +
√
log Md

δ√
2Ni

)
+ λ

(9)

B. Main Code of GA
We release the pytorch-style pseudo code of our GA

method based on FedAvg, and other methods can also be
applied by simply replace the function “client_train”
for local training algorithms, “client_eval” for client
evaluation and “FedAvg” for federated aggregation algo-
rithms by their own. Our codes have been uploaded within
the supplementary materials and will be released publicly
after the paper is accepted.

def GA(gen_gaps, domain_weights, d):
’’’
adjust the domain weights by the

generalization gaps and step
size d

’’’
mean_gap = mean(gen_gaps)
gen_gaps = gen_gaps - mean_gap

# adjust the weights by the gaps and
step size
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for i in range(M):
new_domain_weights[i] =

domain_weights[i] +
gen_gaps[i] / max(gen_gaps) *
d

# normalize the new domain weights
for i in range(M):

new_domain_weights[i] /=
sum(new_domain_weights)

return new_domain_weights

def main():
# initialize the datasets for each

source domain
datasets = get_data()

# initialize the parameters of
global model

global_model = get_model()

# initialize the local models
local_models = [get_model() for i in

range(M)]
broadcast(global_model, local_models)

# initialize the domain weights
domain_weights = [1/M for i in

range(M)]

# federated learning
for r in range(R):

for i in range(M): # client
# evaluate on global model
loss_global[r][i] =

client_eval(global_model,
datasets[i][’val’])

# generalization gap on global
model theta_r

gen_gaps[r][i] =
loss_global[r][i] -
loss_local[r-1][i]

# local training on theta_i_r
local_models[i] =

client_train(local_models[i],
datasets[i][’train’],
local_epochs, t)

loss_local[r][i] =
client_eval(local_models[i],
datasets[i][’val’])

# Generalization Adjustment
domain_weights = GA(gen_gaps[r],

domain_weights, d*(R-r)/R)

# parameter aggregation

global_model =
FedAvg(local_models,
domain_weights)

broadcast(global_model,
local_models)

if __name__ == ’__main__’:
main()

C. More Experimental Results
C.1. Compared with more FedDG methods under

several settings

FedDG is a cross-silo FL problem that each client con-
tains a large scale of data with unique data distribution, and
it aims to solve the out-of-domain generalization problem
in FL. We follow the FedDG setting from ELCFS [5] that
each client corresponds to one domain, which is also the
same as FedSR [6], and CCST [4]. And our GA is contem-
poraneous with FedSR [6], FedASAM+SWA [2] (namely
FedASAM* in Table 1), and CCST [4], which are pub-
lished and open-sourced after the submission deadline of
CVPR2023. Therefore, we add comparisons with these ad-
vanced SOTA FedDG methods in Table 1. GA can still im-
prove the performance on top of them. However, we do
appreciate the suggestion of reviewers that one domain can
correspond to multiple clients, and implement such exper-
iments in Table 1. In experiments, each domain of data
is partitioned into 10 clients, and we randomly select 10
clients to participate in the training per round. From the re-
sults, we can find that our GA can still provide gain for the
large-scale FL.

Table 1. Results with more clients & with more advanced SOTAs.

Dataset
more clients suggested SOTAs

FedAvg Best1 ELCFS FedSR FedASAM* CCST
PACS 80.33 81.62 84.07 83.70 82.04 83.48
with GA 81.99 82.72 84.88 84.66 83.57 84.35

OfficeHome 63.38 64.08 62.88 64.29 64.32 64.25
with GA 64.40 65.04 64.60 64.65 64.80 65.42

C.2. Comparison with TTDA.

The application scenarios of Federated Domain Gener-
alization (FedDG) and test time domain adaptation (TTDA)
are similar, which both focus on the performance on the un-
seen target clients with domain shifts. Generally speaking,
despite similarity, FedDG and TTDA are at different stages.
FedDG aims to improve the out-of-domain generalization
during the training of global model, while TTDA aims to

1Best performance of other baselines in the Table 1 of submitted manuscript to
save space ( ELCFS for PACS and HarmoFL for OfficeHome ).
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better adapt the trained global modal to the new client with
domain shift. FedDG and TTDA complement each other,
and the more generalized global model from FedDG has
better adaptive effects on TTDA. Given the orthogonality of
FedDG and TTDA, we can apply GA on all TTDA methods.
In Table 2, we implement two well-known TTDA meth-
ods: Domain Specific Batch Normalization (DSBN) [3] and
Test-time adaptation by entropy minimization (Tent) [7].
From Table 2, we can see GA can also improve the per-
formance with TTDA.

Table 2. Combination with two TTDA methods.

Method
PACS OfficeHome

P A C S Avg, P A C R Avg.
DSBN 96.26 82.23 80.99 77.50 84.25 73.34 56.49 53.64 73.03 64.13

+GA 96.56 83.18 81.21 80.11 85.26 72.91 57.50 54.99 73.85 64.81
Tent 96.92 85.94 83.06 91.39 86.83 74.63 57.95 56.48 74.67 65.92
+GA 97.16 86.77 83.98 83.28 87.80 74.53 59.79 56.61 75.36 66.57
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