Supplementary Material
A. Implementation Details

The training data is randomly cropped to 224 x 224
and we perform random flipping except for Something-
Something datasets. At inference stage, all frames will be
center-cropped to 224 x 224 except SlowFast [1] which
adopts the resolution of 256 x 256 for evaluation. We
use one-clip one-crop per video during evaluation except
Uniformer [4] which utilizes one-clip three-crop evaluation
protocol. We train all models on NVIDIA Tesla V100 GPUs
and adopt the same training hyperparameters with the offi-
cial implementations.

B. Results of Different Depths

Table 1. Experiments with different depths on Something-
Something V1. The best results are bold-faced.

Top-1 Acc.(%)

Method
oL oM oH
TSM(R18) [6] 16.82 33.12 42.95
TSM(R18)-ST 32.33 38.21 42.95
TSM(R18)-FFN  36.83(4.507) 41.61(3.4017) 43.57(0.621)
CTSM(RIOD) [6] 2215 3930 4957
TSM(R101)-ST 40.76 46.96 49.57

TSM(RI01)-FEN  45.15(4.391) 50.24(3.287) 51.79(2.221)

As we have shown in the main text, Temporal Frequency
Deviation phenomenon exists in different depths of the net-
work which means it has no relation to the representation
ability. But whether FFN can address this issue at other
depths remains a problem. As previous experiments are
built on ResNet-50 [3], we conduct experiments on ResNet-
18, ResNet-101 and include their results in Tab. 1. The re-
sults show that FFN outperforms Separated Training (ST) at
different frame numbers which proves that FFN can effec-
tively resolve Temporal Frequency Deviation problem re-
gardless of the depths of the deep network.

C. Results of Different Middle Sequences

Another design choice in our method is the selection
of middle sequence v, as v” and v* are usually set at
first based on the range of the computations. Thus, we
sample 8/10/12 frames for v respectively and evaluate
them at various frame numbers in Tab. 2. When we sam-
ple 8 frames for v, FFN obtains the best performance at
8 Frame compared to the other two choices and the phe-
nomenon is the same when sampling 10 or 12 frames for
vM. This meets our expectation as the specialized nor-
malization for v™ learns its corresponding transformation.
Overall, all three choices lead to consistent improvement
over Separated Training (ST) at all frames.

D. Any Frame Inference of Input Sequences Com-
binations

In the main text, we have conducted the ablation of input
sequences combinations. We further validate the three mod-
els at more fine-grained frame numbers with the proposed
inference paradigm and the results are shown in Tab. 3. One
can observe that FFN(2) obtains lower accuracy compared
to ST at 6/8/10 Frame because of the missing middle se-
quence. While FFN(4) achieves the highest performance at
8/10/12 Frame as the introduced sequence at Frame 12 will
alleviate the Temporal Frequency Deviation nearby.

E. Further Verification of Nearby Alleviation
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Figure 1. Validation results of TSM which is trained at 4 Frame
on Something-Something V1 dataset.

In previous parts, we have conducted experiments which
train the model at Frame 8/12/16 and evaluate their per-
formance at different frames. Here we further train the
model at 4 Frame and show the validation results in Fig. 1.
Similarly, we can observe that frames close to 4 exhibit
the slightest performance drop as their normalization statis-
tics is more similar with frame 4 which further verifies the
Nearby Alleviation phenomenon.

F. Statistics of Normalization Shifting
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Figure 2. Batch Normalization statistics at various layers. TSM
models are trained at 4 Frame and 16 Frame separately, and the
statistics are calculated from the fourth stage of ResNet-50.

We have shown the calculated normalization statistics,
Mean: £ and Variance: o2 in previous sections. In this part,
we further include the calculated statistics of Scale: + and
Bias: S in Fig. 2. One can observe that the two curves are



Table 2. Experiments with different middle sequences on Something-Something V1. The best results are bold-faced.

Top-1 Acc.(%)

Method oM
4 Frame 6 Frame 8 Frame 10 Frame 12 Frame 14 Frame 16 Frame
TSM [6] - 20.60 30.23 37.36 42.72 45.97 47.49 48.55
TSM-ST - 39.71 43.73 45.63 47.31 47.71 48.01 48.55
"TSM-FFN  8F 4285  46.57 4820 4881 4890 5047 5079
TSM-FFN  10F 43.10 44.77 47.81 49.26 49.63 50.67 51.12
TSM-FFN 12F 42.92 43.57 46.82 48.85 49.73 50.40 50.79

Table 3. Any frame inference results of input sequences combinations on Something-Something V1. The best results are bold-faced.

Top-1 Acc.(%)

Method Sequences
4 Frame 6 Frame 8 Frame 10 Frame 12 Frame 14 Frame 16 Frame
TSM [6] - 20.60 30.23 37.36 42.72 45.97 47.49 48.55
TSM-ST - 39.71 43.73 45.63 47.31 47.71 48.01 48.55
" TSM-FEN(2)  4/16 4169 4207 3793  46.11 4810 4937 4979
TSM-FFN(3) 4/8/16 42.85 46.57 48.20 48.81 48.90 50.47 50.79
TSM-FEN(4) 4/8/12/16 43.40 46.51 48.66 48.92 49.77 50.11 50.63

not aligned with each other which further demonstrates that
the discrepancy of BN statistics is an important reason for
Temporal Frequency Deviation phenomenon and specializ-
ing normalization operations in deep networks is an intu-

Table 4. Quantitative results of different architectures experiments
on Something-Something V1. The best results are bold-faced.

Top-1 Acc.(%)

itive way to resolve normalization shifting.
G. Validation of Normalization Shifting

To further prove that our method can mitigate the nor-
malization shifting problem, we compare the BN statistics
of ST (16F) and FFN (16F) which is trained with TSM [6]
on Something-Something V1 [2] dataset. As is shown
in Fig. 3, one can observe that the two curves are well-
aligned with each other which demonstrates that the calcu-
lated statistics are very similar and the normalization shift-
ing problem can be alleviated by FFN.

ST

Method
vy, UM VH

TSM [6] 20.60 37.36 48.55
TSM-ST 39.71 45.63 48.55
TSM-FFN 42.85(3.141) 48.20(2.571) 50.79(2.247)
TEA [5] 21.78 41.49 51.23
TEA-ST 41.36 48.37 51.23
TEA-FEN 44.97(3.611) 51.61(3.241) 54.04(2.811)
SlowFast [1] 15.08 35.08 45.88
SlowFast-ST 3991 44.12 45.88
SlowFast-FFN  43.90(3.991) 47.11(2.991) 47.27(1.391)
Uniformer [4] 22.38 47.98 56.71
Uniformer-ST 44.33 51.49 56.71

Uniformer-FFN  51.41(7.087)

56.64(5.151)

58.88(2.171)

FFN
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Figure 3. Batch Normalization statistics at various layers. TSM-
ST is trained at 16 Frame and both models are evaluated at 16
Frame as well. The statistics are calculated from the fourth stage
of ResNet-50.

H. Quantitative Results

In the Experiments section, we show performance anal-
ysis of FFN across architectures and datasets in the figure
and we also provide the corresponding quantitative results
in Tab. 4 and Tab. 5 for reference.

Table 5. Quantitative results of different datasets experiments on
TSM. The best results are bold-faced.

Top-1 Acc.(%)

Method Dataset
vrL UMm VH

TSM [6] 31.52 51.55 61.02
TSM-ST Sth-Sth V2 53.38 59.29 61.02
TSM-FEN 56.07(2.691) 61.86(2.571) 63.61(2.591)
TSM [6] 64.10 69.77 73.16
TSM-ST Kinetics400 66.25 70.38 73.16
TSM-FEN 68.96(2.711) 72.33(1.951) 74.35(1.191)
TSM [6] 42.16 46.38 48.30
TSM-ST HMDBS51 44.74 46.77 48.30
TSM-FFN 45.67(0.931) 47.67(0.9017) 48.80(0.501)
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