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1. Implementation Details
1.1. End-to-end Rendering Pipeline

Rasterization Radius. During rasterization, each point is
expanded to a disk to compensate for point cloud sparsity.
We propose the following two heuristic rules to select disk
radius: 1) the disk should cover the gaps between the points,
otherwise the points from the occluded surfaces and the
background can be seen through the front surface (so-called
bleeding problem); 2) the radius should be as small as pos-
sible, otherwise it will lead to inaccurate depth estimation
and the edges of objects will expand. In practice, the selec-
tion of the radius depends on the density of point cloud, and
we can adjust the radius by observing the depth map ob-
tained by rasterization. We also conduct an ablation study
on radius, and it can be seen from Tab. 1 that the effect of
the radius is not significant.

radius 3e-3 4e-3 5e-3 6e-3 7e-3
Hotdog 34.62 35.25 3582 3537 34095
Mic 33.64 3349 3340 33.14 32.73

Table 1. PSNR of Hotdog and Mic scenes under different rasteri-
zation radius. The effect of radius is not significant.

Radiance Mapping and Refinement. We follow the po-
sition encoding form of NeRF [7], but we narrow the en-
coding interval to provide more fine-grained basis function
support for frequency modulation, shown as follows:

7(p) = (sin (207rp) , COS (207rp) ,

sin (20'57rp) , COS (20‘57rp) , 0

sin (2L717rp) , COS (2L*17rp)) .

We set L as 10 and 2 for spatial coordinates and view di-
rections, respectively. Our AFNet has five layers, the input
feature dimension is 120, and hidden dimensions are 256,
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Figure 1. Gated convolution block.
256, 256 and 128. The output dimension is 11 (including
3-channel raw image and 8-channel feature map). Gated
convolution block used in U-Net is shown in Fig. 1. For
upsampling and downsampling in U-Net, we use nearest
neighbor interpolation and average pooling respectively.

Training. During training stage, we conduct data aug-
mentation by random scaling and cropping, and we found
that random scaling is critical for the training of U-Net. The
loss function is shown as follows:

L= LRGB + )\ﬁperceptuala (2)

and we set A as 5e-3 in our experiments. Thanks to the ge-
ometric prior, our model requires only ten minutes of train-
ing to achieve realistic rendering, but takes about 10 hours
to almost converge, as shown in Fig. 2. In order to achieve
complete convergence, more than ten hours of fine-tuning
is required.

1.2. Point Cloud Geometry Optimization

Denoising We set £ = 16, i.e., keep 16 points in each
pixel buffer. Each point p; in point cloud is assigned an
opacity parameter «;, and the color c; is predicted by MLP.
The ray color is obtained as the following discrete volume
rendering equation:

k—1 i—1
C'(r) = ZTiaici7 where T = H(l —aj5).  (3)
i=0 §=0

We optimize the L2 distance of predicted image and ground
truth with sparse regularization as follows:

L= »CRGB + Asparse»csparsea

Lrce = Hé — C'gt||;,
1 N
Esparse = N Z [log (Oéz) + log (1 — Oti)] .
1=1
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Figure 2. Rendering results during training. One Epoch consumes about 12.8s on NeRF-Synthetic. Our model requires only ten minutes of
training to achieve realistic rendering, but takes about 10 hours to almost converge. In order to achieve complete convergence, more than

ten hours of fine-tuning is required.
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Figure 3. Denoising step of preprocessing.
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Figure 4. Depth map during geometry optimization. We remove
outliers near the track and shovel.
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We set Agparse = Se-4 in our experiments, and the learn-
ing rate of MLP and opacity parameters « are set as Se-4
and 0.01, respectively. And for scenes without background,
we also add transparency loss, i.e. L2 distance of pre-
dicted transparency and ground truth transparency. When
the training converges, we remove those low-opacity points,
as shwon in Fig. 3.

In experiments, we perform 4-20 loops (depends on the
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Figure 5. Original and completed point cloud. When an empty
buffer is detected, we add a set of points with opacity parameters
along the pixel ray in the point clouds, shown as red points. Al-
though the completion step introduces additional noise, it would
be removed in the denoising stage of the next iteration.

raw point cloud quality) of point cloud denoising and com-
pletion step alternately. For every denosing step, we train
for 300 Epochs. Fig. 4 shows the depth map computed by
volume rendering equation (replace colors as depth values
of sample points) during optimization. Fig. 5 shows the
point cloud after completion. Although the completion step
introduces additional noise, it would be removed in the de-
noising stage of the next iteration.

1.3. Editing Details

In practice, the part of point cloud that needs to be edited
(i.e., the object) is stored in the form of a mask. We use
PCL library [9] to implement a simple interactive selection
function, as shown in Fig. 7. In fact, users can obtain this
mask by selecting points using any interactive software.



Figure 7. Point cloud selection interface.

For scene composition, since the points on the edge of
the object will expand, the mask of the scene will also ex-
pand outward. We design a simple strategy to avoid artifacts
at edges by shrinking the masks determined by the index
buffers, please refer to the code for specific implementation.

2. Experimental Details

2.1. Datasets

* NeRF-Synthetic [7] is a high quality synthetic dataset
containing pathtraced images of 8 objects. For each
object, there are 100 frames for training and 200

frames for testing. The initial point clouds we used are
generated by MVSNet [12]. We set the training size
as 800x 800 and the scaling factor is [0.5,1.5] of the
side length. At test time, we render with the original
resolution 800 x 800.

We use a subset of Tanks and Temples [5] dataset,
which is from NSVF [6], containing five scenes of real
objects. We also use the foreground masks provided
by NSVF. Each scene contains 152-384 images of size
1920% 1080. Due to the size limitation of U-Net, we
resize the test resolution to 1920x 1056, and training
size is 640x640. The initial point clouds we used are
provided by MVSNet [12].

ScanNet [2] is a RGBD dataset of indoor scenes.
We evaluate on scene0000_.00, scene0043_00, and
scene0045_00, as done in NPBG++ [8] and follow
their training-test split. Specifically, if there are more
than 2000 frames in the scene, we select every 20-th
image such that training views would not be too sparse.
Otherwise, we take 100 frames with an equal interval
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Figure 8. Qualitative comparison on DTU dataset.

in the image stream. Then, we select 10 frames at a
fixed interval for testing and the rest for training. We
set the training size as 720x 720 and the test resolution
is 960x 1200. The initial point clouds are obtained by
the provided depth maps.

DTU [4] is a multi-view stereo dataset with a res-
olution of 1200x1600. We evaluate on scanll0,
scanll4 and scanll8, and use the same point clouds
and training-test split as NPBG++ [8]. We mask out
the background in training using the binary segmen-
tation masks provided by IDR [I3]. The training
patch size is set as 800x800 and the test resolution
1200x 1600.

For ToyDesk [11] dataset, we only perform training
and editing without evaluation.

Compared Methods

NPBG [!]: A famous point-based rendering method,
which uses point-wise features to encode the appear-
ance of each surface point and an U-Net for decoding.

NPBG++ [8]: The improved version of NPBG, which
predicts the descriptors with a feature extractor and
makes the neural descriptors view-dependent.

Huang et al. [3]: The state-of-the-art point-based neu-
ral rendering, which combines explicit point clouds
and implicit radiance mapping. However, its perfor-
mance is still lower than that of NeRF, due to the weak
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Figure 9. Qualitative comparison on ScanNet dataset.
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Figure 10. Qualitative comparison in detail on ScanNet dataset.
Our rendering results are closer to ground truth.

frequency expressiveness and lack of geometric opti-
mization.

¢ CCNeRF [10]: The latest editable variant of NeRF [7],
which represents a 3D scene as a compressible 3D Ten-
sor. Due to the massive sampling and calculation of

tensor decomposition, the rendering speed is only 1.05
FPS.

2.3. Detailed Results

We present some rendering results on Tanks and Tem-
ples dataset in Fig. 6, and qualitative comparisons on DTU
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Figure 11. Extreme views of Lego scene that may be encountered
in editing. We render reasonable results while CCNeRF renders
distorted colors.

and ScanNet datasets in Figs. 8 and 9, respectively. A com-
parison of details on ScanNet dataset is shwon in Fig. 10.
Although the rendering results look similar overall as seen
from Figs. 8 and 9, we are better at some details, as shwon
in Fig. 10. Due to the blurring of some training images
in ScanNet dataset, some rendering results of novel views
are also blurred. For the compared methods, we all use the
same experimental configuration, which is fair. We present
quantitative evaluation for each scene of each dataset in
Tabs. 2, 3 and 4. More editing results are shown in Figs.
11,12 and 13.
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Figure 12. Editing results, including object-level editing and scene composition.
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Figure 13. Object translation, rotation and scaling on ToyDesk [ ! 1] dataset. As can be seen from the last line of results, the rotation of the
green object will expose the untrained local space, resulting in artifacts, which are also reflected in the results of Object-NeRF [11].



NeRF-Synthetic

Method Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean
PSNR?T
NeRF [7] 33.00 25.01 30.13 36.18 32.54 29.62 3291 28.65 31.01
CCNeRF-CP [10] 33.63 24.23 29.40 35.27 32.94 28.34 32.81 27.77 30.55
CCNeRF-HY-S [10] 34.37 24.76 30.04 36.04 33.66 28.96 33.53 28.38 31.22
NPBG [1] 28.81 23.57 28.23 32.03 27.72 27.24 31.16 26.04 28.10
NPBG++ [8] 28.72 23.60 28.11 32.22 27.84 27.12 31.23 26.11 28.12
Huang et al. 31.13 24.51 29.09 33.20 26.62 28.03 32.94 26.14 28.96
Ours 33.06 25.95 32.19 35.82 31.56 29.69 33.64 27.97 31.24
SSIM?T
NeRF [7] 0.967 0.925 0.964 0.974 0.961 0.949 0.980 0.856 0.947
CCNeRF-CP [10] 0.964 0.906 0.950 0.966 0.957 0.923 0.971 0.842 0.935
CCNeRF-HY-S [10] 0.976 0.918 0.962 0.978 0.969 0.935 0.983 0.853 0.947
NPBG [1] 0.954 0.902 0.942 0.960 0.919 0.922 0.970 0.812 0.923
NPBG++ [8] 0.961 0.910 0.947 0.961 0.923 0.925 0.972 0.822 0.928
Huang et al. 0.953 0.924 0.958 0.964 0.902 0.945 0.983 0.824 0.932
Ours 0.974 0.938 0.971 0.974 0.956 0.955 0.986 0.845 0.950
LPIPS]
NeRF [7] 0.046 0.091 0.044 0.121 0.050 0.063 0.028 0.206 0.081
CCNeRF-CP [10] 0.037 0.111 0.055 0.057 0.037 0.082 0.031 0.196 0.076
CCNeRF-HY-S [10] 0.036 0.109 0.054 0.056 0.036 0.080 0.030 0.192 0.074
NPBG [1] 0.047 0.093 0.046 0.055 0.089 0.076 0.037 0.171 0.077
NPBG++ [8] 0.048 0.092 0.043 0.053 0.089 0.074 0.030 0.178 0.076
Huang et al. 0.040 0.068 0.035 0.038 0.085 0.050 0.014 0.159 0.061
Ours 0.025 0.065 0.026 0.028 0.045 0.046 0.015 0.142 0.049

Table 2. PSNRT, SSIM1 and LPIPS| on each scene of NeRF-Synthetic dataset.



Tanks and Temples

Method Barn Caterpillar Family Ignatius Truck Mean
PSNR?T
NeRF [7] 24.05 23.75 30.29 2543 25.36 25.78
CCNeRF-CP [10] 25.84 24.02 32.13 27.24 25.84 27.01
CCNeRF-HY-S [10] 26.34 24.48 32.75 27.76 26.34 27.53
NPBG [1] 24.86 22.05 30.84 26.50 25.59 25.97
NPBG++ [8] 24.90 22.22 30.67 26.98 25.45 26.04
Huang et al. [3] 25.34 23.09 30.65 27.01 25.68 26.35
Ours 27.01 24.67 32.36 28.83 26.56 27.79
SSIM?T
NeRF [7] 0.750 0.860 0.932 0.920 0.860 0.864
CCNeRF-CP [10] 0.807 0.864 0.934 0.916 0.872 0.879
CCNeRF-HY-S [10] 0.827 0.886 0.957 0.939 0.894 0.901
NPBG [1] 0.841 0.848 0.940 0.928 0.887 0.889
NPBG++ [8] 0.842 0.863 0.943 0.933 0.878 0.892
Huang et al. [3] 0.841 0.855 0.946 0.936 0.886 0.893
Ours 0.847 0.876 0.953 0.941 0.895 0.902
LPIPS]
NeRF [7] 0.395 0.196 0.098 0.111 0.192 0.198
CCNeRF-CP [10] 0.310 0.223 0.078 0.099 0.192 0.180
CCNeRF-HY-S [10] 0.304 0.219 0.076 0.097 0.188 0.177
NPBG [1] 0.219 0.182 0.072 0.076 0.138 0.137
NPBG++ [8] 0.197 0.181 0.075 0.068 0.131 0.130
Huang et al. [3] 0.195 0.179 0.069 0.077 0.131 0.130
Ours 0.179 0.175 0.066 0.073 0.131 0.125

Table 3. PSNR1, SSIM1 and LPIPS| on each scene of Tanks and Temples dataset.



ScanNet DTU

Method Scene0000 Scene0043 Scene0045 Mean Scan110 Scanl14 Scanl18 Mean

PSNRT
NeRF [7] 22.08 25.98 29.15 25.74 25.55 27.42 27.78 26.92
CCNeRF-CP [10] 21.14 25.89 2691 24.65 25.88 27.89 26.61 26.79
CCNeRF-HY-S [10] 21.38 26.22 27.91 25.17 26.23 28.12 27.34 27.23
NPBG [1] 22.24 25.27 27.75 25.09 24.65 26.74 26.62 26.00
NPBG++ [£] 22.05 25.51 28.26 25.27 24.84 26.72 26.67 26.08
Huang et al. [3] 23.79 25.26 28.59 25.88 25.05 26.87 26.75 26.22
Ours 24.35 26.15 29.48 26.66 26.45 28.31 27.06 27.27

SSIM+t
NeRF [7] 0.729 0.869 0.743 0.780 0.909 0.894 0.924 0.909
CCNeRF-CP [10] 0.695 0.849 0.779 0.774 0.904 0.894 0.922 0.907
CCNeRF-HY-S [10] 0.701 0.854 0.788 0.781 0.909 0.896 0.925 0.910
NPBG [1] 0.695 0.830 0.686 0.737 0.907 0.873 0.904 0.895
NPBG++ [£] 0.742 0.859 0.716 0.772 0.910 0.865 0.909 0.895
Huang et al. [3] 0.748 0.844 0.789 0.794 0.917 0.863 0.919 0.900
Ours 0.754 0.863 0.792 0.803 0.915 0.892 0.916 0.908

LPIPS|
NeRF [7] 0.588 0.466 0.558 0.537 0.194 0.217 0.182 0.198
CCNeRF-CP [10] 0.599 0.457 0.569 0.542 0.181 0.191 0.161 0.178
CCNeRF-HY-S [10] 0.594 0.456 0.566 0.539 0.171 0.188 0.154 0.171
NPBG [1] 0.474 0.421 0.482 0.459 0.124 0.143 0.123 0.130
NPBG++ [8] 0.457 0.410 0.477 0.448 0.125 0.148 0.121 0.131
Huang et al. [3] 0.440 0.389 0.415 0.415 0.124 0.154 0.117 0.132
Ours 0.418 0.369 0.412 0.400 0.122 0.143 0.122 0.129

Table 4. PSNRT, SSIM1 and LPIPS/ on each scene of ScanNet and DTU datasets.
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