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In this supplementary material, we present:

• Section 1: ablation study of T2M-GPT architecture.

• Section 2: ablation study of the reconstruction loss (Lre

in Equation [3]) for motion VQ-VAE.

• Section 3: ablation study of τ for the corruption strategy
in T2M-GPT training.

• Section 4: ablation study of the number of codes in
VQ-VAE.

• Section 5: more details on the evaluation metrics and
the motion representations.

• Section 6: the detail of the Motion VQ-VAE architec-
ture.

• Section 7: limitations of our proposed approach.

• Section 8: more funding information.

1. Ablation study of T2M-GPT architecture
In this section, we present results with different trans-

former architectures for T2M-GPT. The results are provided
in Table 1. We notice that better performance can be obtained
with a larger architecture. We finally leverage an 18-layer
transformer with 16 heads and 1,024 dimensions.

2. Impact of the reconstruction loss in motion
VQ-VAE

In this section, we study the effect of the reconstruction
loss (Lre in Equation [3]) and the hyper-parameter α (Equa-
tion [3]). The results are presented in Table 2. We find that
L1 Smooth achieves the best performance on reconstruction,
and the performance of L1 loss is close to L1 Smooth loss.
For the hyper-parameter α, we find that α = 0.5 leads to the
best performance.

3. Impact of τ for the corruption strategy in
T2M-GPT training

In this section, we study τ , which is used for corrupt-
ing sequences during the training of T2M-GPT. The results
are provided in Table 3. We can see that the training with
corrupted sequences τ = 0.5 significantly improves over
Top-1 accuracy and FID compared to τ = 0. Compared
to τ ∈ U [0, 1], τ = 0.5 is probably preferable for Hu-
manML3D [1], as it achieves comparable Top-1 accuracy
compared to τ ∈ U [0, 1] but with much better FID.

4. Ablation study of the number of codes in
VQ-VAE

We investigate the number of codes in the codebook in
Table 4. We find that the performance of 512 codes is slightly
better than 1,024 codes. The results show that 256 codes are
not sufficient for reconstruction.

5. More details on the evaluation metrics and
the motion representations.

5.1. Evaluation metrics

We detail the calculation of several evaluation metrics,
which are proposed in [1]. We denote ground-truth motion
features, generated motion features, and text features as fgt,
fpred, and ftext. Note that these features are extracted with
pretrained networks in [1].

FID. FID is widely used to evaluate the overall quality of
the generation. We obtain FID by

FID = ∥µgt−µpred∥2−Tr(Σgt+Σpred− 2(ΣgtΣpred)
1
2 )
(1)
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Num. layers Num. dim Num. heads FID ↓ Top-1 ↑ Training time (hours).

4 512 8 0.469±.014 0.469±.002 17
8 512 8 0.339±.010 0.481±.002 23
8 768 8 0.338±.009 0.490±.003 30
8 768 12 0.296±.009 0.484±.002 31

12 768 12 0.273±.007 0.487±.002 40
12 1024 16 0.149±.007 0.489±.002 55
16 768 12 0.145±.006 0.486±.003 47
16 1024 16 0.143±.007 0.490±.004 59
18 768 12 0.130±.006 0.483±.003 51
18 1024 16 0.141±.005 0.492±.003 78

Table 1. Ablation study of T2M-GPT architecture on HumanML3D [1] test set. For all the architectures, we use the same motion
VQ-VAE. The T2M-GPT is trained with τ ∈ U [0, 1]. The training time is evaluated on a single Tesla V100-32G GPU.

Lcons α
Reconstruction

FID ↓ Top-1 (%)

L1 0 0.095±.001 0.493±.002

L1 0.5 0.144±.001 0.495±.003

L1 1 0.160±.001 0.496±.003

L1Smooth 0 0.112±.001 0.496±.003

L1Smooth 0.5 0.070±.001 0.501±.002

L1Smooth 1 0.128±.001 0.499±.003

L2 0 0.321±.002 0.478±.003

L2 0.5 0.292±.002 0.483±.002

L2 1 0.213±.002 0.490±.003

Table 2. Ablation of losses for VQ-VAE on HumanML3D [1]
test set. We report FID and Top1 metric for the models trained
300K iterations.

τ FID ↓ Top-1 ↑ MM-Dist ↓

0.0 0.140±.006 0.417±.003 3.730±.009

0.1 0.131±.005 0.453±.002 3.357±.007

0.3 0.147±.006 0.485±.002 3.157±.007

0.5 0.116±.004 0.491±.003 3.118±.011

0.7 0.155±.006 0.480±.004 3.183±.011

U [0, 1] 0.141±.005 0.492±.003 3.121±.009

Table 3. Analysis of τ on HumanML3D [1] test set.

Num. code Reconstruction

FID ↓ Top-1 (%)

256 0.145±.001 0.497±.002

512 0.070±.001 0.501±.002

1024 0.090±.001 0.498±.003

Table 4. Study on the number of code in codebook on Hu-
manML3D [1] test set.

where µgt and µpred are mean of fgt and fpred. Σ is the
covariance matrix and Tr denotes the trace of a matrix.

MM-Dist. MM-Dist measures the distance between the
text embedding and the generated motion feature. Given
N randomly generated samples, the MM-Dist measures the
feature-level distance between the motion and the text. Pre-
cisely, it computes the average Euclidean distances between
each text feature and the generated motion feature from this
text:

MM-Dist =
1

N

N∑
i=1

∥fpred,i − ftext,i∥ (2)

where fpred,i and ftext,i are the features of the i-th text-
motion pair.

Diversity. Diversity measures the variance of the whole
motion sequences across the dataset. We randomly sample
Sdis pairs of motion and each pair of motion features is de-
noted by fpred,i and f ′

pred,i. The diversity can be calculated
by

Diversity =
1

Sdis

Sdis∑
i=1

||fpred,i − f ′
pred,i|| (3)

In our experiments, we set Sdis to 300 as [1].

MModality. MModality measures the diversity of human
motion generated from the same text description. Precisely,
for the i-th text description, we generate motion 30 times
and then sample two subsets containing 10 motion. We
denote features of the j-th pair of the i-th text description by
(fpred,i,j , f ′

pred,i,j). The MModality is defined as follows:

MModality =
1

10N

N∑
i=1

10∑
j=1

∥fpred,i,j − f ′
pred,i,j∥ (4)

5.2. Motion representations

We use the same motion representations as [1]. Each
pose is represented by (ṙa, ṙx, ṙz, ry, jp, jv, jr, cf ), where
ṙa ∈ R is the global root angular velocity; ṙx ∈ R, ṙz ∈ R
are the global root velocity in the X-Z plan; jp ∈ R3j , jv ∈
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Dilation rate Reconstruction

FID ↓ Top-1 (%)

1, 1, 1 0.145±.001 0.500±.003

4, 2, 1 0.138±.001 0.502±.002

9, 3, 1 0.070±.001 0.501±.002

16, 4, 1 57.016±.084 0.032±.001

Table 5. Ablation study of different dilation rate in VQ-VAE on
HumanML3D [1] test set.

R3j , jr ∈ R6j are the local pose positions, velocity and
rotation with j the number of joints; cf ∈ R4 is the foot
contact features calculated by the heel and toe joint velocity.

6. VQ-VAE Architecture
We illustrate the detailed architecture of VQ-VAE in Ta-

ble 6. The dimensions of the HumanML3D [1] and KIT-
ML [2] datasets feature are 263 and 259 respectively.

Dilation rate. We investigate the impact of different dila-
tion rates of the convolution layers used in VQ-VAE, and
the results are presented in Table 5 for reconstruction. We
notice that setting the dilation rate as (9, 3, 1) gives the most
effective and stable performance.

7. Limitations
Our approach has two limitations: i) for excessively long

texts, the generated motion might miss some details of the
textual description. Note that this typical failure case exists
for all competitive approaches. ii) some generated motion
sequences slightly jitter on the legs and hands movement,
this can be seen from the visual results provided in the sup-
plementary material. We think the problem comes from
the VQ-VAE architecture, with a better-designed architec-
ture, the problem might be alleviated. For a real application,
the jittering problem could be addressed using a temporal
smoothing filter as a post-processing step.
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Components Architecture

VQ-VAE Encoder (0): Conv1D(Din, 512, kernel size=(3,), stride=(1,), padding=(1,))
(1): ReLU()
(2): 2 × Sequential(

(0): Conv1D(512, 512, kernel size=(4,), stride=(2,), padding=(1,))
(1): Resnet1D(

(0): ResConv1DBlock(
(activation1): ReLU()
(conv1): Conv1D(512, 512, kernel size=(3,), stride=(1,), padding=(9,), dilation=(9,))
(activation2): ReLU()
(conv2): Conv1D(512, 512, kernel size=(1,), stride=(1,)))

(1): ResConv1DBlock(
(activation1): ReLU()
(conv1): Conv1D(512, 512, kernel size=(3,), stride=(1,), padding=(3,), dilation=(3,))
(activation2): ReLU()
(conv2): Conv1D(512, 512, kernel size=(1,), stride=(1,)))

(2): ResConv1DBlock(
(activation1): ReLU()
(conv1): Conv1D(512, 512, kernel size=(3,), stride=(1,), padding=(1,))
(activation2): ReLU()
(conv2): Conv1D(512, 512, kernel size=(1,), stride=(1,)))))

Codebook nn.Parameter((512, 512), requires grad=False)

VQ-VAE Decoder (0): 2 × Sequential(
(0): Conv1D(512, 512, kernel size=(3,), stride=(1,), padding=(1,))
(1): Resnet1D(

(0): ResConv1DBlock(
(activation1): ReLU()
(conv1): Conv1D(512, 512, kernel size=(3,), stride=(1,), padding=(9,), dilation=(9,))
(activation2): ReLU()
(conv2): Conv1D(512, 512, kernel size=(1,), stride=(1,)))

(1): ResConv1DBlock(
(activation1): ReLU()
(conv1): Conv1D(512, 512, kernel size=(3,), stride=(1,), padding=(3,), dilation=(3,))
(activation2): ReLU()
(conv2): Conv1D(512, 512, kernel size=(1,), stride=(1,)))

(2): ResConv1DBlock(
(activation1): ReLU()
(conv1): Conv1D(512, 512, kernel size=(3,), stride=(1,), padding=(1,))
(activation2): ReLU()
(conv2): Conv1D(512, 512, kernel size=(1,), stride=(1,)))))

(2): Upsample(scale factor=2.0, mode=nearest)
(3): Conv1D(512, 512, kernel size=(3,), stride=(1,), padding=(1,))

(1): ReLU()
(2): Conv1D(512, Din, kernel size=(3,), stride=(1,), padding=(1,))

Table 6. Architecture of our Motion VQ-VAE.
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