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In the supplementary material, we start with detailing
the full-scene depth distribution of MVS scenarios under
the GMM assumption in Sec. I. In Sec. II, we review the
cascade-based MVS framework and provide details of the
geometry fusion network and the geometry embedding. In
Sec. III, we present our fusion strategy, showing additional
qualitative reconstruction results by our model, comparing
the computational effectiveness of recent methods, and giv-
ing more ablation studies. And we discuss the limitation of
the proposed GeoMVSNet in Sec. IV.

I. Depth Distribution of MVS Scenarios

In this section, we describe in more detail how to model
the full-scene depth distribution based on the Gaussian-
Mixture Model. Different MVS scenarios generally have
different external properties, e.g. total number of view-
points, scene depth extremes, etc. Therefore, it is unreliable
to reflect the overall distribution of the whole scene by only
counting the depth values of a single view.

In contrast, we count the depth values of all viewpoints
on valid pixels for each scene. The 2D plane view of
Fig. 5 of the main text is shown in Fig. 9. Based on the
plane sweeping algorithm [66], we usually divide the pre-
estimated depth range into M depth hypothesis planes, and
we set M = 64 bins for calculating the distribution his-
tograms for statistical depth values of all pixels among all
viewpoints. And we use the GMM with K = 1 and K = 2
to fit the full-scene depth distribution.

Most scenarios can be well portrayed at K ≤ 2, but
Fig. 8 shows the special case. From the figure, we can see
that the depth value distribution of the scene has three dis-
tinct peaks. However, the GMM assumption does not fail,
and we can still compute the similarity of depth values be-
longing to each bin in a discrete way as mathematically ex-
pressed by Equ. 11 and Equ. 12 in the main text.
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Figure 8. Special case of MVS scenario with K = 3 under the
GMM assumption on the BlendedMVS dataset.

II. Supplement of Methodology
In this section, we first review the pipeline of the

learning-based MVS network and the cascade-based MVS
framework in Sec. II.1. Then, we provide the specific data
structures and parameters of the proposed two-branch ge-
ometry fusion network in Sec.II.2 and show more examples
of the probability volume geometry embedding in Sec. II.3.

II.1. Review of Cascade-based MVS Framework

Most end-to-end MVS frameworks follow the classic
pipeline of MVSNet [70]. The deep feature {Fi}Ni=0 ∈
RC×H×W are firstly extracted from the input reference im-
age I0 and source images {Ii}Ni=1. Different feature chan-
nels represent different descriptions and portrayals of the
input RGB images. Afterward, the differentiable homogra-
phy is used to warp source features to the reference camera
frustum by

Hi→0(d) = dKiTiT
−1
0 K−1

0 , (14)

where K and T = {R | t} refer to the camera intrinsics and
extrinsics respectively, and d is sampled from [dmin , dmax ].

We adopt the group-wise correlation [67, 68] strategy to
reduce the channel dimension. Let F0(z)

g and Fi(z)
g be
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Figure 9. Plan view of depth distributions of Fig. 5 in the main text.
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Figure 10. More examples of the probability volume geometry embedding on the advanced set of Tanks and Temples dataset. (a)
Scene of the Museum; (b) scene of the Auditorium.

the g-th group feature of F0 and Fi, the g-th group similarity
is computed as

Si(z)
g =

G

C
⟨F0(z)

g, Fi(z)
g⟩ , (15)

where ⟨:, :⟩ denotes the inner product, and the respective
group similarity vector Si ∈ RG×M×H×W . To handle
an arbitrary number of input viewpoints, the aggregation
process is applied for assembling the cost volume C ∈
RG×M×H×W . And the adaptive aggregation [71] is used
to re-weight the contribution of pixels,

C =

∑N−1
i=1 wiSi∑N−1
i=1 wi

. (16)

The cost volume encodes the cost matching between the
reference image and all paired source images under spa-
tial division. And learning-based MVS methods further use
neural networks to optimize the rough and incorrect match-
ing and generate the probability volume P ∈ RM×H×W .
As for the final depth estimation, we adopt the classifica-
tion approach and generate the depth map D from P by
applying the winner-takes-all [66].

In an extension of the above single-stage process, the
cascade-based architecture uses early depths to narrow the
depth hypothesis in a coarse-to-fine manner. And we explic-
itly integrate the geometric priors from coarse stages into
finer stages to exploit the full-scene geometry perception.

II.2. Geometry Fusion Network

Details of the specific data structures and parameters of
the geometry fusion network are shown in Tab. 6. We build
the two-branch submodules B and B̂ using the “Conv.”
block, “ResBlock∗” block, and “DeResBlock∗” block. And
the Fusion network integrates the structural features with
the original FPN feature among different stages. The geo-
metric priors from coarse stages are explicitly encoded into
the feature extraction process in finer stages, laying a solid
foundation for robust aggregation.

II.3. Geometry Embedding

We present the geometry embedded in the circular vault
structure in Fig. 3 of the main text. And Fig. 10 visual-
izes more examples of the probability volumes geometry
embedding of planar areas and cylindrical man-made struc-
tures. We can see that geometric clues of the scene are re-
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Figure 11. Confidence distribution on the Tanks and Temples
dataset. (a) Scene of the Panther; (b) scene of the Temple. Darker
means greater confidence produced by the network.

covered continuously and finely while they are embedded
into the cost regularization network at finer stages, helping
the network to learn full-scene geometry perception better.

III. Supplement of Experiments
In this section, we describe our depth map fusion strategy

in more detail in Sec. III.1 and give more qualitative point
cloud reconstruction results in Sec. III.2. Then, we discuss
the computational effectiveness of run-time and GPU con-
sumption in Sec. III.3 and give more ablation studies of our
model in Sec. III.4.

III.1. Depth Map Fusion Strategy

The strategy of depth map fusion mainly relies on ge-
ometric consistency filtering and photometric consistency
filtering. Similar to the left-right disparity check in stereo
tasks, MVS methods filter the scene geometries by repro-
jection between adjacent viewpoints. P ′ is obtained by
mapping a pixel P in the image I0 to the source view Ii
through estimated depth D0(P ), and in turn, P ′ can be pro-
jected back to I0 at P ′′ through source depth Di(P

′). If the
reprojected pixel location P ′′ and its corresponding depth
D0(P

′′) satisfy
|P − P ′′| ≤ τ1 , (17)

|D0(P
′′)−D0(P )|
D0(P )

≤ τ2 , (18)

we say the depth estimation of D0 is two-view consistent
with Di. And the dynamic fusion strategy [69] can adap-
tively select the number of consistent viewpoints suitable
for the scene scale and the total number of viewpoints.

As for photometric consistency filtering, existing meth-
ods always use the fixed parameter setting and adopt dif-
ferent thresholds for different scenarios. We model the
full-scene depth distribution based on the Gaussian-Mixture
Model in the main text, and the observation of large volume
depth values tending to be concentrated in small areas is
also adopted for filtering. Fig. 11 visualizes two confidence

Figure 12. Visualization of the reconstruction point clouds of
the aerial photography on the BlendedMVS dataset.

maps and the corresponding distributions. We can see that
there is a large concentration of energy around the confi-
dence close to 1 which means the network considers the
depth estimates at these pixel locations to be very reliable.
However, the confidence distribution of most pixels still sat-
isfies the Gaussian distribution. Therefore, we fuse the full-
scene point cloud using pixel with confidence c ≥ µ − 3σ
for each scenario. It should be noted that µ is shifted to
the right and the σ is larger due to the concentration of en-
ergy at high confidence locations, but we do not modify the
deviation since higher confidence is always more reliable.

III.2. More Point Clouds Reconstruction Results

Fig. 12 shows the reconstruction results of aerial photog-
raphy on the BlendedMVS dataset, and Fig. 15 shows more
reconstruction point clouds on the DTU dataset. Fig. 16
and Fig.17 present qualitative reconstruction point clouds
on the intermediate and advanced sets of the Tanks and
Temples dataset respectively. It can be seen that the pro-
posed GeoMVSNet can produce 3D reconstruction models
(point clouds) with remarkable accuracy and completeness.

III.3. Computational Effectiveness

We compare the overall score with respect to running
time (Left) and GPU memory consumption (Right) in
Fig.13 on the DTU dataset. Our method has a significant
advantage in run-time and overall performance. This is be-
cause we do not introduce additional external dependencies,
and we only need to sample a few depth hypothesis planes.
Our memory consumption is comparable to existing meth-
ods, and the reason for slightly higher consumption com-
pared to other cascade-based methods is mainly that we ex-
plicitly encode the coarse probability volumes into the cost
regularization network. However, we replace the complex
3D convolutions with 2D convolutions, so there is an even
lower running time.
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Figure 13. Comparison of run-time and memory consumption
of recent methods on the DTU dataset.

Table 4. Ablation results of feature fusion on the DTU dataset.

Method Acc. (mm) Comp.(mm) Overall↓ (mm)
a) original feat. 0.3629 0.3016 0.3323
b) branch feat. 0.3577 0.3321 0.3449
c) original + branch 0.3520 0.2893 0.3207

Table 5. Ablation results of geometry embedding on the inter-
mediate set of the Tanks and Temples dataset.

Method Mean↑ Family Francis Horse L.H. M60 Panther P.G. Train
1) w/o embedding 62.12 80.96 65.53 46.91 63.87 61.78 60.90 60.49 56.53
2) X + Y 61.56 79.99 65.41 43.69 64.63 62.27 60.05 61.48 54.92
3) Z 62.89 80.27 64.61 51.67 64.29 63.32 61.55 61.42 55.98
4) X + Y + Z 63.52 81.17 65.48 53.46 65.62 62.85 61.26 62.15 56.14

III.4. More Ablation Studies

The fusion of the original feature. We use the proposed
two-branch geometry fusion network to integrate geometric
priors contained in coarse depth maps with ordinary fea-
tures extracted by the classic FPN. However, the Branch
network itself can generate structural features for the refer-
ence image. Tab. 4 shows the comparison between a) orig-
inal feature only; b) branch feature only; c) branch feature
fuse with the original feature.

We can see that the branch feature itself is difficult to
characterize the MVS input images well. This is due to the
fact that only the feature of the reference viewpoint is ex-
tracted by the geometric prior embedded in the coarse depth
map, while the corresponding source features are still ex-
tracted by the ordinary FPN. It is difficult to match the fea-
tures learned by two completely unrelated neural networks.
Therefore, we use the Fusion network to integrate the geo-
metric structure with the original reference feature and sig-
nificantly improve reconstruction completeness.

The geometry position embedding. We conduct the ab-
lation experiments of the probability volume geometry em-
bedding on the Tanks and Temples dataset in Tab. 5 since
large-scale scenarios have rich geometric information and
outdoor scenarios can better reflect the effectiveness of the
method. As pointed out in the main text, the probability
volume embedding strategy requires structural features as
the foundation to achieve the best reconstruction quality.
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Figure 14. Visualization of the evaluation depth map error
(threshold < 2mm) of the training process on the DTU dataset.

Hence, we utilize the geometry feature fusion method in
“1) w/o embedding” experiment. And we embed different
positional encodings into the cost regularization network.

As shown in “2) X + Y”, the pixel-wise positional en-
coding hardly works since the cost regularization network
mainly performs matching optimization in the depth dimen-
sion and also increases the unnecessary learning burden of
the network. The encoding in the depth dimension can
improve the overall reconstruction quality of almost every
scene as shown in “3) Z”, and achieve better results with
the positional enhancement of different regions as shown in
“4) X + Y + Z”. The probability volume geometry embed-
ding makes full use of the rich geometric clues contained in
coarse layers without introducing complex external depen-
dencies to enhance the full-scene geometry perception.

The curriculum learning strategy. We propose to use
frequency domain filtering to eliminate the high-frequency
clutter textures and adopt the curriculum learning strategy to
embed geometric priors into finer stages from easy to diffi-
cult. And we adjust the learning weight by modulating the
cutout kernel ratio ρ.

The evaluation depth map error of the training process at
different parameter settings is shown in Fig. 14. From the
figure, we have the observation that the curriculum learning
strategy can improve the quality of training convergence.
And the frequency domain filtering strategy can effectively
prevent the interference of wrong high-frequency informa-
tion and obtain a more accurate depth map. However, the
lack of high-frequency textures will make it difficult for the
network to learn more new knowledge in later stages (green
rectangle curve). Our parameter setting strategy has the
most stable learning curve and the lowest depth map error,
which fully embeds the geometric priors into the Fusion
network and cost regularization network.



IV. Limitation
As aforementioned, we explicitly integrate geometric

priors into the MVS network without introducing external
dependencies. However, the two-branch feature fusion net-
work and the embedding of the coarse probability volumes
still increase the complexity of the cascade-based frame-
work. How to better encode scene structures for MVS net-
works without introducing additional complexity is still an
open problem. Besides, coarse stages only imply the ge-
ometric clues of the reference view, and how to model the
geometric information of the source views is also a problem
worthy of further study.
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Figure 15. Visualization on more reconstruction point clouds on the DTU dataset.
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Figure 16. Visualization of the reconstruction point clouds on the intermediate set of the Tanks and Temples dataset.
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Figure 17. Visualization of the reconstruction point clouds on the advanced set of the Tanks and Temples dataset. The first and third
rows are the global perspective of large-scale buildings. And the second and last rows are the zoomed-in snapshots.



Table 6. Detailed data structures and parameters of the geometry fusion network.

Input Input Size Layer Output Output Size
(a) B-branch

Conv.*
[rgb,depth] 4 ×H ×W Conv, kernel size=5, stride=1 - 8 ×H ×W
- 8 ×H ×W BatchNorm - 8 ×H ×W
- 8 ×H ×W ReLU rf 8 ×H ×W

ResBlock*
rf 8 ×H ×W Conv+BN+ReLU rf1 16 ×H/2×W/2
rf1 16 ×H/2×W/2 Conv+BN+ReLU rf2 32 ×H/2×W/2
rf2 32 ×H/2×W/2 Conv+BN+ReLU rf3 64 ×H/4×W/4
rf3 64 ×H/4×W/4 Conv+BN+ReLU rf4 128 ×H/4×W/4
rf4 128 ×H/4×W/4 Conv+BN+ReLU rf5 256 ×H/8×W/8

DeResBlock*
rf5 256 ×H/8×W/8 ConvTranspose+BN+ReLU rfup4 128 ×H/4×W/4
rfup4+rf4 128 ×H/4×W/4 ConvTranspose+BN+ReLU rfup3 32 ×H/2×W/2
rfup3+rf2 32 ×H/2×W/2 ConvTranspose+BN+ReLU rfup2 16 ×H/2×W/2
rfup2+rf1 16 ×H/2×W/2 ConvTranspose+BN+ReLU rfup1 8 ×H ×W
rfup1+rf 8 ×H ×W ConvTranspose+BN+ReLU B-output 2 ×H ×W

Conv.*
B-output 2 ×H ×W 1st channel layer B-struct 1 ×H ×W

(b) B̂-branch
Conv.*

[depth,B-struct] 2 ×H ×W Conv, kernel size=5, stride=1 - 8 ×H ×W
- 8 ×H ×W BatchNorm - 8 ×H ×W
- 8 ×H ×W ReLU rf’ 8 ×H ×W

ResBlock*
rf’ 8 ×H ×W Conv+BN+ReLU rf1’ 16 ×H/2×W/2
rf1’ 16 ×H/2×W/2 Conv+BN+ReLU rf2’ 32 ×H/2×W/2
[rf2,rf2’] 64 ×H/2×W/2 Conv+BN+ReLU rf3’ 64 ×H/4×W/4
rf3’ 64 ×H/4×W/4 Conv+BN+ReLU rf4’ 128 ×H/4×W/4
[rf4,rf4’] 256 ×H/4×W/4 Conv+BN+ReLU rf5’ 256 ×H/8×W/8

DeResBlock*
rf5+rf5’ 256 ×H/8×W/8 ConvTranspose+BN+ReLU rfup4’ 128 ×H/4×W/4
rfup4’+rf4’ 128 ×H/4×W/4 ConvTranspose+BN+ReLU rfup3’ 64 ×H/4×W/4

rfup3’+rf3’ 64 ×H/4×W/4 ConvTranspose+BN+ReLU rfup2’ (B̂-struct) 32 ×H/2×W/2

rfup2’+rf2’ 32 ×H/2×W/2 ConvTranspose+BN+ReLU rfup1’ (B̂-struct) 16 ×H/2×W/2

rfup1’+rf1’ 16 ×H/2×W/2 ConvTranspose+BN+ReLU rfup’ (B̂-struct) 8 ×H ×W

(c) Fusion
rfup2’+FPN-feat 32 ×H/2×W/2 ConvTranspose+BN+ReLU geo-fused-feat

(ℓ = 1)
32 ×H ×W

rfup1’+FPN-feat 16 ×H/2×W/2 ConvTranspose+BN+ReLU geo-fused-feat
(ℓ = 2)

16 ×H ×W

rfup’+FPN-feat 8 ×H ×W ConvTranspose+BN+ReLU geo-fused-feat
(ℓ = 3)

8 ×H ×W


	. Depth Distribution of MVS Scenarios
	. Supplement of Methodology
	. Review of Cascade-based MVS Framework
	. Geometry Fusion Network
	. Geometry Embedding

	. Supplement of Experiments
	. Depth Map Fusion Strategy
	. More Point Clouds Reconstruction Results
	. Computational Effectiveness
	. More Ablation Studies

	. Limitation

