
6. Supplementary
This document provides additional proof, technical de-

tails, quantitative results, and qualitative visualization to the
main paper.

6.1. Proof of Proposition

Suppose the normalization process follows Equation 1,
and the loss at optimization is denoted by L, and the gra-
dient to embedding f follows Equation 2. Based on them,
we show the orthogonality between an embedding and its
gradient by computing the their inner product:
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6.2. Description of Dataset

ModelNet40 ModelNet40 dataset contains 12,311
shapes from 40 object categories, and they are split into
9,843 for training and 2,468 for testing. Since the dataset
does not provide partial point clouds, we evaluate our pro-
posed method on performing point cloud reconstruction and
shape classification. We generate input point clouds by
evenly sampling 1024 points from the surface of objects and
normalize them within a unit sphere, and no data augmen-
tation is used at training.

ShapeNet ShapeNet part dataset [36] dataset contains
16,881 shapes from 16 object categories with 50 parts. Each
point cloud contains 2048 points which are generated by
evenly sampling from the surface of objects, and we fol-
low the same set splitting as in [22]. Since the dataset does
not provide partial point clouds, we evaluate our proposed
method on performing point cloud reconstruction and part
segmentation.

MVP MVP dataset [18] contains pairs of partial and
complete point clouds from 16 categories. Partial point
clouds are generated by back-projecting 2.5D depth images
into 3D space and complete point clouds are used as ground
truth. In the experiments, we apply the set splitting given
by the dataset and no data augmentation is used.

GraspNet Most point cloud completion approaches re-
ported results on synthetic datasets, since collecting a real-
world dataset with annotation of complete shapes is expen-
sive. Unfortunately, incomplete measurements from real-
world 3D sensors differ from those point clouds synthesized
in a simulated environment, and approaches trained on syn-
thetic dataset struggle when tasked to perform completion

Model Seg Acc. CD
PointNet-Folding 92.06 50.08
PointNet-Folding (H) 92.01 34.75
PointNet-PCN 92.06 43.61
PointNet-PCN (H) 92.01 38.18
PointNet-TopNet 92.06 37.4
PointNet-TopNet (H) 92.01 35.50
DGCNN-Folding 92.50 49.21
DGCNN-Folding (H) 92.39 33.88
DGCNN-PCN 92.50 42.42
DGCNN-PCN (H) 92.39 37.11
DGCNN-TopNet 92.50 36.80
DGCNN-TopNet (H) 92.38 35.10

Table 5. Single-task learning on ShapeNet. Overall point segmentation
accuracy (Seg Acc.) is reported for part segmentation, and Chamfer Dis-
tance (CD) is reported for point cloud reconstruction, multiplied by 104.
The first column describes the encoders and decoders used in the model,
and “H” indicates using the proposed hyperspherical module.

Model Cls Acc. CD
PointNet-Folding 87.33 75.86
PointNet-Folding (H) 87.36 48.88
PointNet-PCN 87.33 48.17
PointNet-PCN (H) 87.36 43.55
PointNet-TopNet 87.33 55.04
PointNet-TopNet (H) 87.36 49.65
DGCNN-Folding 89.22 70.32
DGCNN-Folding (H) 89.47 45.37
DGCNN-PCN 89.22 46.54
DGCNN-PCN (H) 89.47 42.70
DGCNN-TopNet 89.22 55.87
DGCNN-TopNet (H) 89.47 48.75

Table 6. Single-task learning on ModelNet40. Overall classification accu-
racy (Cls Acc.) is reported for shape classification, and Chamfer distance
(CD) is reported for point cloud reconstruction, multiplied by 104. The
first column describes the encoders and decoders used in the model, and
“H” indicates using the proposed hyperspherical module.

in real-world scenarios. More recently, the GraspNet [5]
dataset was released and it contains the groundtruth com-
plete shapes of objects, which helps evaluate point cloud
completion. GraspNet contains 190 cluttered and complex
scenes captured by RGBD cameras, bringing 97,280 images
in total. For each image, the accurate 6D pose and the dense
grasp poses are annotated for each object. There are in total
88 objects with provided CAD 3D models, and we use them
to generate complete shape groundtruth with 1024 points.

6.3. More Experiments

Since ModelNet40 and ShapeNet do not provide pairs
of partial and complete point clouds, we report results of
point cloud reconstruction along with shape classification
on ModelNet40 and part segmentation on ShapeNet.

ModelNet40 Quantitative results on Modelnet40 [36]
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Figure 10. Performance of multi-task learning of point cloud reconstruction and classification on ModelNet40 with different learning rates.

are shown in Table 6. To make a fair comparison, we re-
port results of the combination of two popular encoders,
PointNet [21] without T-Net and DGCNN [32], and three
different point cloud decoders, Folding [39], PCN [41] and
TopNet [27]. The baseline models are compared to their
variants added with our proposed hyperspherical modules
denoted with (H). As shown by the last column in Table
6, our proposed hyperspherical module helps baseline ap-
proaches gain noticeable decrease of Chamfer Distance in
all cases. We also test the proposed module in shape classi-
fication by removing point cloud decoders and adding fully
connected layers. As shown in the second column, the pro-
posed method module leads to slightly better performance
of shape classification. Multi-task learning results on shape
reconstruction and classification are shown in Figure 10. By
comparing the results of models with unconstrained embed-
dings, the proposed hyperspherical module have little effect
on the performance of semantic tasks. However, models
with the proposed module have more stable performance
when using large learning rates than those with uncon-
strained embeddings, since the same setting tend to cause
the training with unconstrained embeddings unconverged.
In terms of converged results, models with our method still
outperform their baselines with noticeable improvement.

ShapeNet We report the results on ShapeNet [36] in Ta-
ble 5. Similar to models constructed for experiments on
ModelNet40, we experiment on a combination of different
encoders and decoders. As shown by the last column in Ta-
ble 5, the proposed hyperspherical module improves point
cloud reconstruction consistently in all cases. When tasked
on part segmentation, the point cloud decoders are removed
from the models, and the embeddings concatenated with
lifted point-wise features are processed by fully connected
layers to predict part category. From the second column in
Table 5, part segmentation performance is not affected by
the proposed module. Multi-task learning results on shape
reconstruction and part segmentation are shown in Figure
11. By comparing the results of models with unconstrained
embeddings, the proposed hyperspherical module have lit-
tle effect on the performance of semantic tasks. However,
models with the proposed module have more stable per-
formance when using large learning rates than those with

unconstrained embeddings, since the same setting tend to
cause the training with unconstrained embeddings uncon-
verged. In terms of converged results, models with our
method still outperform their baselines with noticeable im-
provement.

6.4. More visualization

We show the angular distribution of embeddings by com-
puting the pairwise cosine similarity obtained from the test
set in MVP dataset. More visualizations of different classes
as described in the plot titles are shown in Figure 12, and
the distribution of overall classes is shown in Figure 5

More qualitative results of 3D object detection, pose es-
timation, and point cloud completion can be found in Figure
13.
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Figure 11. Performance of multi-task learning of point cloud reconstruction and part segmentation on ShapeNet with different learning rates.
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Figure 12. Cosine similarity distribution of embeddings. We compute pairwise cosine distance between embeddings obtained from the test set in MVP
dataset. We visualize the distribution of different classes as described in the plot titles. Hyperspherical embeddings have more compact angular distribution.
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Figure 13. More qualitative 3D detection, pose estimation, and point cloud completion results on GraspNet test set.


