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1. Implementation Details
GCN Block and GAF Block. We construct the GCN
block and the GAF block by combining a GCN/GAF and
a separated MLP. Besides, we adopt residual connections in
the GCN/GAF blocks. For a better understanding, we give
the formulation of our Graph Attentive Filter again and give
a detailed description as follows:

F l+1 = σ(FFN(R · Â)) ⋄ Φ(F l), (1)

where FFN is a feed-forward network to further learn the
relation, · represents element-wise multiplication and the
symmetric adjacency matrix Â is repeated to fit the cor-
relation matrix R ∈ RN×N×C , where C is the dimension
of the point features F l. Φ represents the non-linear feature
transformation and σ is a normalization operator. ⋄ is the
graph aggregation operation. Our GAF estimate channel-
wise edge relations R̃ = σ(FFN(R · Â)), and we give a
detailed formulation of the channel-wise graph aggregation
as follows:

F l+1
ij = Pooling

k
(R̃ikj Φ(F

l)kj). (2)

In practice, we use the softmax function as normalization.
For computational efficiency, the channel-wise estimated
correlations are shared for every 8 channels.

Network Architectures. Figure 1 illustrates the detailed
design of our segmentation heads for part segmentation and
semantic segmentation. The part segmentation head is con-
structed following CurveNet [40].

2. More Experimental Results
We report the results on Toronto-3D [33] in table 1.

Toronto-3D is a large-scale dataset for outdoor scene seg-
mentation, which covers about 1KM of urban roadways
with 8 categories. 78.3 million points are scanned by mo-
bile LiDAR systems. Compared with the indoor datasets,
Toronto-3D contains more noise. We split Toronto-3D into
5m×5m blocks and sampled 2048 points from each block
following previous works [19,20]. We normalize each point
cloud into the unit block, and the initial radius r is set to
0.05m. The sampling rate in each stage is set to 2.
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Figure 1. Architectures of segmentation heads.

We report per-class results and compare more meth-
ods on S3DIS [1] in Table 3 and Table 4. Our methods
outperform previous methods in both Area-5 and 6-fold
cross-validation. Compared with the previous SOTA Strat-
ified Transformer [14], our AF-GCN is 22.2% faster in in-
ference and 10× faster in training. We also report per-
class results on ScanNetV2 [5]. Compared with the S3DIS
dataset, points in ScanNetV2 are relatively sparse and the
voxel-based methods usually obtain better performance. As
shown in Table 5, our method outperforms recent point-
based methods. We report per-class results on ShapeNet-
Part [43] in Table 2. Our method outperforms others both
in category mIoU and instance mIoU. More visualization is
shown in Figure 2.

We also conduct experiments for object classification
on ScanObjectNN [37]. We reported the best performance
we obtained (OA:88.2, mAcc:86.2), with no significant im-
provement from baselines. Since the classification task does
not require a decoder, and the input scale is so small (1024)
that the global features are less affected by ”distant” neigh-
bors, we did not discuss it in the main text.

3. Limitation and Future Work
Limitation. Our method obtains competitive perfor-
mance in multiple point cloud segmentation datasets. How-
ever, compared with the voxel-based methods or the point-
based methods using voxel-like processing techniques, our
method obtains a relatively lower performance in deal-
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Methods (time order) OA mIoU Road Rd mrk. Natural Building Util. line Pole Car Fence

PointNet++ [30] 92.56 59.47 92.90 0.00 86.13 82.15 60.96 62.81 76.41 14.43
DGCNN [38] 94.24 61.79 93.88 0.00 91.25 80.39 62.40 62.32 88.26 15.81
MS-PCNN [27] 90.03 65.89 93.84 3.83 93.46 82.59 67.80 71.95 91.12 22.50
TGNet [19] 94.08 61.34 93.54 0.00 90.83 81.57 65.26 62.98 88.73 7.85
KPConv [36] 95.39 69.11 94.62 0.06 96.07 91.51 87.68 81.56 85.66 15.72
MS-TGNet [33] 95.71 70.50 94.41 17.19 95.72 88.83 76.01 73.97 94.24 23.64
diffConv [20] - 76.73 83.31 51.06 69.04 79.55 80.48 84.41 76.19 89.83

Ours 97.06 79.76 97.42 69.56 94.79 94.96 78.21 83.35 91.54 28.21

Table 1. Quantitative results on Toronto-3D [33] dataset for semantic segmentation. We compare with different methods in terms of overall
point accuracy (OA), mean per-class IoU (mIoU) and per-class mIoU.

Methods Cat. mIoU Ins. mIoU aero bag cap car chair earphone guitar knife lamp laptop motor mug pistol rocket skateboard table
PointNet [29] 80.4 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6
PointNet++ [30] 81.9 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6
PointCNN [18] 84.6 86.1 84.1 86.5 86.0 80.8 90.6 79.7 92.3 88.4 85.3 96.1 77.2 95.3 84.2 64.2 80.0 83.0
RS-CNN [24] 84.0 86.2 83.5 84.8 88.8 79.6 91.2 81.1 91.6 88.4 86.0 96.0 73.7 94.1 83.4 60.5 77.7 83.6
DGCNN [17] 82.3 85.2 84.0 83.4 86.7 77.8 90.6 74.7 91.2 87.5 82.8 95.7 66.3 94.9 81.1 63.5 74.5 82.6
KPConv [36] 85.1 86.4 84.6 86.3 87.2 81.1 91.1 77.8 92.6 88.4 82.7 96.2 78.1 95.8 85.4 69.0 82.0 83.6
DensePoint [23] 84.2 86.4 84.0 85.4 90.0 79.2 91.1 81.6 91.5 87.5 84.7 95.9 74.3 94.6 82.9 64.6 76.8 83.7
3D-GCN [22] 82.1 85.1 83.1 84.0 86.6 77.5 90.3 74.1 90.0 86.4 83.8 95.6 66.8 94.8 81.3 59.6 75.7 82.8
PAConv [41] 84.6 86.1 84.3 85.0 90.4 79.7 90.6 80.8 92.0 88.7 82.2 95.9 73.9 94.7 84.7 65.9 81.4 84.0
Ours 85.3 87.0 85.3 87.3 89.1 82.3 92.2 80.5 92.3 88.5 85.2 96.1 78.5 96.1 85.2 64.5 78.9 83.7

Table 2. Quantitative results on ShapeNetPart [43].

ing with some sparse point cloud datasets such as Scan-
NetV2 [5]. Besides, the way we estimate the feature cor-
relation is relatively primitive.

Future work. In the future, we will try to implement our
approach on large outdoor datasets such as SemanticKITTI.
We will explore the voxel-like processing techniques in
graph construction to deal with the sparse point cloud better.
To further improve the graph representation, we will try to
explore a more delicate hybrid structure and design a more
efficient way to estimate correlations between points.



Methods mIoU mAcc OA ceiling floor wall beam column window door table chair sofa bookcase board clutter
PointNet [29] 41.1 49.0 - 88.8 97.3 69.8 0.1 3.9 46.3 10.8 59.0 52.6 5.9 40.3 26.4 33.2
SegCloud [35] 48.9 57.4 - 90.1 96.1 69.9 0.0 18.4 38.4 23.1 70.4 75.9 40.9 58.4 13.0 41.6
PointCNN [18] 57.3 63.9 85.9 92.3 98.2 79.4 0.0 17.6 22.8 62.1 74.4 80.6 31.7 66.7 62.1 56.7
SPGraph [15] 58.0 66.5 86.4 89.4 96.9 78.1 0.0 42.8 48.9 61.6 84.7 75.4 69.8 52.6 2.1 52.2
HPEIN [13] 61.9 68.3 87.2 91.5 98.2 81.4 0.0 23.3 65.3 40.0 75.5 87.7 58.5 67.8 65.6 49.4
MinkowskiNet [4] 65.4 71.7 - 91.8 98.7 86.2 0.0 34.1 48.9 62.4 81.6 89.8 47.2 74.9 74.4 58.6
KPConv [36] 67.1 72.8 - 92.8 97.3 82.4 0.0 23.9 58.0 69.0 81.5 91.0 75.4 75.3 66.7 58.9
JSENet [11] 67.7 - - 93.8 97.0 83.0 0.0 23.2 61.3 71.6 89.9 79.8 75.6 72.3 72.7 60.4
RandLA-Net [10] 62.4 71.4 87.2 91.1 95.6 80.2 0.0 24.7 62.3 47.7 76.2 83.7 60.2 71.1 65.7 53.8
CloserLook3D [25] 66.9 72.1 90.0 94.8 98.4 82.5 0.0 25.5 51.3 70.9 92.1 81.9 76.7 70.1 64.5 61.2
PAConv [41] 66.6 73.0 - 94.6 98.6 82.4 0.0 26.4 58.0 60.0 89.7 80.4 74.3 69.8 73.5 57.7
CGA-Net [26] 68.6 - - 94.5 98.3 83.0 0.0 25.3 59.6 71.0 92.2 82.6 76.4 77.7 69.5 61.5
PCT [9] 61.3 67.7 - 92.5 98.4 80.6 0.0 19.4 61.6 48.0 76.6 85.2 46.2 67.7 67.9 52.3
PointTrans. [46] 70.4 76.5 90.8 94.0 98.5 86.3 0.0 38.0 63.4 74.3 89.1 82.4 74.3 80.2 76.0 59.3
CBL [34] 69.4 75.2 90.6 93.9 98.4 84.2 0.0 37.0 57.7 71.9 91.7 81.8 77.8 75.6 69.1 62.9
FastPointTrans. [28] 68.7 77.1 - 93.8 97.8 85.5 0.6 49.9 60.5 72.9 80.2 88.7 56.0 71.4 78.0 58.1
Stratified Trans. [14] 72.0 78.1 91.5 96.2 98.7 85.6 0.0 46.1 60.0 76.8 92.6 84.5 77.8 75.2 78.1 64.0
RepSurf [32] 68.9 76.5 90.2 93.3 98.5 85.7 0.0 38.1 61.5 71.8 80.1 90.4 80.3 71.2 68.2 56.0
HilbertNet [2] 70.9 - - 94.6 97.8 88.9 0.0 37.6 64.1 73.8 88.4 85.4 73.5 82.7 74.7 60.1
PointMixer [3] 71.4 77.4 - 94.2 98.2 86.0 0.0 43.8 62.1 78.5 90.6 82.2 73.9 79.8 78.5 59.4
Ours 72.3 77.9 91.1 95.4 98.6 85.1 0.0 47.3 58.3 80.4 83.9 92.0 80.6 77.3 79.9 61.8

71.8± 0.5 77.5± 0.4 91.1± 0.1
Ours† 73.3 79.3 91.5 94.6 98.6 86.3 0.0 51.7 62.8 79.0 84.5 91.8 83.5 77.0 82.4 61.0

72.5± 0.8 78.5± 0.6 91.3± 0.3

Table 3. Quantitative results on S3DIS Area 5 dataset [1].

Methods mIoU mAcc OA ceiling floor wall beam column window door table chair sofa bookcase board clutter
PointNet [29] 47.6 66.2 78.6 88.0 88.7 69.3 42.4 23.1 47.5 51.6 54.1 42.0 9.6 38.2 29.4 35.2
RSNet [12] 56.5 66.5 - 92.5 92.8 78.6 32.8 34.4 51.6 68.1 59.7 60.1 16.4 50.2 44.9 52.0
SPGraph [15] 62.1 73.0 86.4 89.9 95.1 76.4 62.8 47.1 55.3 68.4 73.5 69.2 63.2 45.9 8.7 52.9
PointCNN [18] 65.4 75.6 88.1 94.8 97.3 75.8 63.3 51.7 58.4 57.2 71.6 69.1 39.1 61.2 52.2 58.6
PointWeb [45] 66.7 76.2 87.3 93.5 94.2 80.8 52.4 41.3 64.9 68.1 71.4 67.1 50.3 62.7 62.2 58.5
ShellNet [44] 66.8 - 87.1 90.2 93.6 79.9 60.4 44.1 64.9 52.9 71.6 84.7 53.8 64.6 48.6 59.4
KPConv [36] 70.6 79.1 - 93.6 92.4 83.1 63.9 54.3 66.1 76.6 57.8 64.0 69.3 74.9 61.3 60.3
FPConv [21] 68.7 - - 94.8 97.5 82.6 42.8 41.8 58.6 73.4 81.0 71.0 61.9 59.8 64.2 64.2
RandLA-Net [10] 70.0 82.0 88.0 93.1 96.1 80.6 62.4 48.0 64.4 69.4 69.4 76.4 60.0 64.2 65.9 60.1
SCF-Net [6] 71.6 82.7 88.4 93.3 96.4 80.9 64.9 47.4 64.5 70.1 71.4 81.6 67.2 64.4 67.5 60.9
PAConv [41] 69.3 78.7 - 94.3 93.5 82.8 56.9 45.7 65.2 74.9 59.7 74.6 67.4 61.8 65.8 58.4
BAAF [31] 72.2 83.1 88.9 93.3 96.8 81.6 61.9 49.5 65.4 73.3 72.0 83.7 67.5 64.3 67.0 62.4
PointTrans. [46] 73.5 81.9 90.2 94.3 97.5 84.7 55.6 58.1 66.1 78.2 77.6 74.1 67.3 71.2 65.7 64.8
CBL [34] 73.1 79.4 89.6 94.1 94.2 85.5 50.4 58.8 70.3 78.3 75.7 75.0 71.8 74.0 60.0 62.4
Ours 77.7 85.1 91.7 95.6 97.7 86.1 64.3 66.1 69.8 82.0 77.4 85.0 77.0 72.0 69.3 68.2
Ours† 78.4 86.2 91.8 94.8 97.8 86.7 63.2 69.7 70.5 81.4 76.6 89.4 78.5 71.8 70.6 68.5

Table 4. Quantitative results on S3DIS [1] with 6-fold cross validation.

Methods Input Val mIoU Test mIoU bath bed bksf cab chair cntr curt desk door floor othr pic ref show sink sofa tab toil wall wind
PointNet++ [30] point 53.5 55.7 73.5 66.1 68.6 49.1 74.4 39.2 53.9 45.1 37.5 94.6 37.6 20.5 40.3 35.6 55.3 64.3 49.7 82.4 75.6 51.5
PointCNN [18] point - 45.8 57.7 61.1 35.6 32.1 71.5 29.9 37.6 32.8 31.9 94.4 28.5 16.4 21.6 22.9 48.4 54.5 45.6 75.5 70.9 47.5
PointConv [39] point 61.0 66.6 78.1 75.9 69.9 64.4 82.2 47.5 77.9 56.4 50.4 95.3 42.8 20.3 58.6 75.4 66.1 75.3 58.8 90.2 81.3 64.2
SparseConvNet [8] voxel 69.3 72.5 64.7 82.1 84.6 72.1 86.9 53.3 75.4 60.3 61.4 95.5 57.2 32.5 71.0 87.0 72.4 82.3 62.8 93.4 86.5 68.3
KPConv [36] point 69.2 68.4 84.7 75.8 78.4 64.7 81.4 47.3 77.2 60.5 59.4 93.5 45.0 18.1 58.7 80.5 69.0 78.5 61.4 88.2 81.9 63.2
MinkowskiNet [4] voxel 72.2 73.6 85.9 81.8 83.2 70.9 84.0 52.1 85.3 66.0 64.3 95.1 54.4 28.6 73.1 89.3 67.5 77.2 68.3 87.4 85.2 72.7
SegGCN [16] point - 58.9 83.3 73.1 53.9 51.4 78.9 44.8 46.7 57.3 48.4 93.6 39.6 6.1 50.1 50.7 59.4 70.0 56.3 87.4 77.1 49.3
RandLA-Net [10] point - 64.5 77.8 73.1 69.9 57.7 82.9 44.6 73.6 47.7 52.3 94.5 45.4 26.9 48.4 74.9 61.8 73.8 59.9 82.7 79.2 62.1
PointASNL [42] point 63.5 66.6 70.3 78.1 75.1 65.5 83.0 47.1 76.9 47.4 53.7 95.1 47.5 27.9 63.5 69.8 67.5 75.1 55.3 81.6 80.6 70.3
JSENet [11] point - 69.9 88.1 76.2 82.1 66.7 80.0 52.2 79.2 61.3 60.7 93.5 49.2 20.5 57.6 85.3 69.1 75.8 65.2 87.2 82.8 64.9
RFCR [7] point - 70.2 88.9 74.5 81.3 67.2 81.8 49.3 81.5 62.3 61.0 94.7 47.0 24.9 59.4 84.8 70.5 77.9 64.6 89.2 82.3 61.1
CBL [34] point - 70.5 76.9 77.5 80.9 68.7 82.0 43.9 81.2 66.1 59.1 94.5 51.5 17.1 63.3 85.6 72.0 79.6 66.8 88.9 84.7 68.9
Ours† point 73.4 71.8 84.5 75.1 81.6 71.4 85.1 52.8 81.9 62.3 60.3 95.5 52.9 28.0 65.9 86.8 71.3 78.5 60.1 90.0 84.4 68.1

Table 5. Quantitative results on ScanNetV2 [5].
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Figure 2. More visualization compared with PointTransformer [46]. Zoom-in for a better view.
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