Improving Graph Representation for Point Cloud Segmentation
via Attentive Filtering

Supplementary Material

1. Implementation Details

GCN Block and GAF Block. We construct the GCN
block and the GAF block by combining a GCN/GAF and
a separated MLP. Besides, we adopt residual connections in
the GCN/GAF blocks. For a better understanding, we give
the formulation of our Graph Attentive Filter again and give
a detailed description as follows:

F!*! = 6(FFN(R - A)) o $(F!), (1)

where FFN is a feed-forward network to further learn the
relation, - represents element-wise multiplication and the
symmetric adjacency matrix A is repeated to fit the cor-
relation matrix R € RYXNXC where C is the dimension
of the point features F''. & represents the non-linear feature
transformation and o is a normalization operator. ¢ is the
graph aggregation operation. Our GAF estimate channel-
wise edge relations R = o(FFN(R - A)), and we give a
detailed formulation of the channel-wise graph aggregation
as follows:

Fll;rl = Po?cling(?iikj B(F')ij)- 2

In practice, we use the softmax function as normalization.
For computational efficiency, the channel-wise estimated
correlations are shared for every 8 channels.

Network Architectures. Figure 1 illustrates the detailed
design of our segmentation heads for part segmentation and
semantic segmentation. The part segmentation head is con-
structed following CurveNet [40].

2. More Experimental Results

We report the results on Toronto-3D [33] in table 1.
Toronto-3D is a large-scale dataset for outdoor scene seg-
mentation, which covers about 1KM of urban roadways
with 8 categories. 78.3 million points are scanned by mo-
bile LiDAR systems. Compared with the indoor datasets,
Toronto-3D contains more noise. We split Toronto-3D into
Smx5m blocks and sampled 2048 points from each block
following previous works [19,20]. We normalize each point
cloud into the unit block, and the initial radius r is set to
0.05m. The sampling rate in each stage is set to 2.
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Figure 1. Architectures of segmentation heads.

We report per-class results and compare more meth-
ods on S3DIS [1] in Table 3 and Table 4. Our methods
outperform previous methods in both Area-5 and 6-fold
cross-validation. Compared with the previous SOTA Strat-
ified Transformer [14], our AF-GCN is 22.2% faster in in-
ference and 10x faster in training. We also report per-
class results on ScanNetV2 [5]. Compared with the S3DIS
dataset, points in ScanNetV?2 are relatively sparse and the
voxel-based methods usually obtain better performance. As
shown in Table 5, our method outperforms recent point-
based methods. We report per-class results on ShapeNet-
Part [43] in Table 2. Our method outperforms others both
in category mloU and instance mloU. More visualization is
shown in Figure 2.

We also conduct experiments for object classification
on ScanObjectNN [37]. We reported the best performance
we obtained (OA:88.2, mAcc:86.2), with no significant im-
provement from baselines. Since the classification task does
not require a decoder, and the input scale is so small (1024)
that the global features are less affected by “distant” neigh-
bors, we did not discuss it in the main text.

3. Limitation and Future Work

Limitation. Our method obtains competitive perfor-
mance in multiple point cloud segmentation datasets. How-
ever, compared with the voxel-based methods or the point-
based methods using voxel-like processing techniques, our
method obtains a relatively lower performance in deal-



Methods (time order)‘ OA mloU Road Rdmrk. Natural Building Util. line Pole Car  Fence

PointNet++ [30] 9256 59.47 9290 0.00 86.13 82.15 60.96 62.81 7641 14.43
DGCNN [38] 9424 6179 93.88 0.00 91.25 80.39 62.40 62.32  88.26 15.81
MS-PCNN [27] 90.03 65.89 93.84 3.83 93.46 82.59 67.80 7195 91.12 2250
TGNet [19] 94.08 6134 9354 0.00 90.83 81.57 65.26 6298 88.73  7.85
KPConv [36] 9539 69.11 94.62 0.06 96.07 91.51 87.68 81.56 85.66 15.72
MS-TGNet [33] 95.71 70.50 94.41 17.19 95.72 88.83 76.01 73.97 9424 23.64
diffConv [20] - 76.73  83.31 51.06 69.04 79.55 80.48 8441 76.19 89.83
Ours ‘ 97.06 79.76 9742  69.56 94.79 94.96 78.21 83.35 91.54 2821

Table 1. Quantitative results on Toronto-3D [33] dataset for semantic segmentation. We compare with different methods in terms of overall
point accuracy (OA), mean per-class loU (mloU) and per-class mloU.

Methods ‘ Cat. mIoU  Ins. mloU ‘ aero bag cap car chair earphone guitar knife lamp laptop motor mug pistol rocket skateboard table
PointNet [29] 80.4 83.7 834 787 825 749 89.6 73.0 91.5 859 80.8 953 652 930 812 579 72.8 80.6
PointNet++ [30] 81.9 85.1 824 790 877 773 90.8 71.8 91.0 859 837 953 71.6 941 813 58.7 76.4 82.6
PointCNN [18] 84.6 86.1 84.1 86.5 86.0 80.8 90.6 79.7 923 884 853 96.1 772 953 842 642 80.0 83.0
RS-CNN [24] 84.0 86.2 835 848 888 79.6 912 81.1 91.6 884 86.0 96.0 737 941 834 605 717 83.6
DGCNN [17] 823 85.2 84.0 834 867 77.8 90.6 74.7 912 875 828 957 663 949 8I.1 63.5 74.5 82.6
KPConv [36] 85.1 86.4 84.6 863 872 8l.1 9l1.1 77.8 926 884 827 962 78.1 958 854  69.0 82.0 83.6
DensePoint [23] 84.2 86.4 84.0 854 90.0 792 91.1 81.6 91.5 875 847 959 743 946 829 64.6 76.8 83.7
3D-GCN [22] 82.1 85.1 83.1 840 86.6 77.5 903 74.1 90.0 864 838 956 66.8 948 813 59.6 75.7 82.8
PAConv [41] 84.6 86.1 84.3 850 904 79.7 90.6 80.8 920 887 822 959 739 947 847 65.9 81.4 84.0
Ours \ 85.3 87.0 \ 853 873 89.1 823 922 80.5 923 885 852 96.1 785 961 852 645 78.9 83.7

Table 2. Quantitative results on ShapeNetPart [43].

ing with some sparse point cloud datasets such as Scan-
NetV2 [5]. Besides, the way we estimate the feature cor-
relation is relatively primitive.

Future work. In the future, we will try to implement our
approach on large outdoor datasets such as SemanticKITTI.
We will explore the voxel-like processing techniques in
graph construction to deal with the sparse point cloud better.
To further improve the graph representation, we will try to
explore a more delicate hybrid structure and design a more
efficient way to estimate correlations between points.



Methods ‘ mloU mAcc OA ‘ ceiling floor wall beam column window door table chair sofa bookcase board clutter
PointNet [29] 41.1 49.0 - 888 973 698 0.1 3.9 46.3 10.8 59.0 526 59 40.3 264 332
SegCloud [35] 48.9 574 - 90.1  96.1 699 0.0 184 384 23.1 704 759 409 584 13.0 416
PointCNN [18] 573 63.9 859 923 982 794 0.0 17.6 22.8 62.1 744 80.6 317 66.7 62.1 56.7
SPGraph [15] 58.0 66.5 86.4 89.4 969 78.1 0.0 42.8 489 61.6 847 754 69.8 52.6 2.1 52.2
HPEIN [13] 61.9 68.3 87.2 91.5 982 814 0.0 233 65.3 40.0 755 87.7 585 67.8 65.6 49.4
MinkowskiNet [4] 65.4 71.7 - 91.8 98.7 86.2 0.0 34.1 48.9 624 81.6 898 472 74.9 74.4 58.6
KPConv [30] 67.1 72.8 - 92.8 973 824 0.0 239 58.0 69.0 815 91.0 754 75.3 66.7 58.9
JSENet [11] 67.7 - - 93.8 97.0 83.0 0.0 232 61.3 71.6 899 798 75.6 72.3 727 60.4
RandLA-Net [10] 62.4 71.4 87.2 91.1 95.6 80.2 0.0 24.7 62.3 477 762 837 602 71.1 65.7 53.8
CloserLook3D [25] 66.9 72.1 90.0 94.8 984 825 0.0 25.5 51.3 709 921 819 76.7 70.1 64.5 61.2
PAConv [41] 66.6 73.0 - 94.6 98.6 824 0.0 26.4 58.0 60.0 89.7 804 743 69.8 735 57.7
CGA-Net [26] 68.6 - - 945 983 830 0.0 253 59.6 71.0 922 826 764 717 69.5 61.5
PCT [9] 61.3 67.7 - 925 984 80.6 0.0 19.4 61.6 480 766 852 462 67.7 679 523
PointTrans. [46] 70.4 76.5 90.8 940 985 863 0.0 38.0 63.4 743 89.1 824 743 80.2 76.0 593
CBL [34] 69.4 75.2 90.6 939 984 842 0.0 37.0 57.7 719 91.7 818 778 75.6 69.1 62.9
FastPointTrans. [28] | 68.7 77.1 - 938 978 855 0.6 49.9 60.5 729 802 887 56.0 71.4 78.0  58.1
Stratified Trans. [14] | 72.0 78.1 91.5 962 987 856 0.0 46.1 60.0 76.8 92,6 845 778 75.2 78.1 64.0
RepSurf [37] 68.9 76.5 90.2 933 985 857 0.0 38.1 61.5 71.8 80.1 904 803 71.2 682  56.0
HilbertNet [2] 70.9 - - 946 978 889 0.0 37.6 64.1 73.8 884 854 735 82.7 747  60.1
PointMixer [3] 71.4 774 - 942 982 860 0.0 43.8 62.1 785 90.6 822 739 79.8 78.5 59.4
Ours 72.3 719 91.1 954 986 851 0.0 473 583 804 839 920 80.6 713 799 618
71.8+0.5 77.5+04 91.1£0.1
Ours’ 73.3 79.3 91.5 94.6 98.6 86.3 0.0 51.7 62.8 79.0 845 918 835 71.0 82.4 61.0
725+£0.8 785+0.6 91.3+£0.3
Table 3. Quantitative results on S3DIS Area 5 dataset [1].
Methods ‘ mloU mAcc OA ‘ ceiling floor wall beam column window door table chair sofa bookcase board clutter
PointNet [29] 47.6 66.2  78.6 88.0 88.7 69.3 424 23.1 47.5 51.6 541 420 9.6 38.2 294 352
RSNet [12] 56.5 66.5 - 92.5 92.8 78.6 328 34.4 51.6 68.1 59.7 60.1 164 50.2 44.9 52.0
SPGraph [15] 62.1 73.0 864 89.9 95.1 764 628 47.1 55.3 684 735 692 632 45.9 8.7 52.9
PointCNN [ 18] 65.4 75.6  88.1 94.8 973 758 633 51.7 58.4 572 716 69.1 39.1 61.2 52.2 58.6
PointWeb [45] 66.7 762 873 935 942 80.8 524 41.3 64.9 68.1 714 67.1 503 62.7 62.2 58.5
ShellNet [44] 66.8 - 87.1 90.2 936 799 604 44.1 64.9 529 716 847 538 64.6 48.6 59.4
KPConv [36] 70.6 79.1 - 93.6 924 831 639 54.3 66.1 76.6 57.8 640 693 74.9 61.3 60.3
FPConv [21] 68.7 - - 94.8 975 82.6 428 41.8 58.6 734 81.0 71.0 619 59.8 64.2 64.2
RandLA-Net [10] | 70.0 82.0 88.0 93.1 96.1 80.6 624 48.0 64.4 694 694 764 60.0 64.2 65.9 60.1
SCF-Net [6] 71.6 82.7 88.4 933 96.4 809 649 47.4 64.5 70.1 714 8l1.6 672 64.4 67.5 60.9
PAConv [41] 69.3 78.7 - 943 935 828 569 45.7 65.2 749 597 746 674 61.8 65.8 58.4
BAAF [31] 72.2 83.1 889 933 96.8 81.6 619 49.5 65.4 733 720 837 675 64.3 67.0 62.4
PointTrans. [40] 73.5 819 90.2 943 975 847 556 58.1 66.1 782 776 741 673 71.2 65.7 64.8
CBL [34] 73.1 794  89.6 94.1 942 855 504 58.8 70.3 783 757 750 718 74.0 60.0 62.4
Ours 71.7 851 917 95.6 97.7 86.1 643 66.1 69.8 820 774 850 770 72.0 69.3 68.2
Ours’ 784 86.2 918 94.8 97.8 86.7 632 69.7 70.5 814 766 894 785 71.8 70.6 68.5
Table 4. Quantitative results on S3DIS [1] with 6-fold cross validation.
Methods Input | ValmloU TestmloU | bath bed bksf cab chair cntr curt desk door floor othr pic  ref show sink sofa tab toil wall wind
PointNet++ [30] point 535 55.7 735 66.1 68.6 49.1 744 392 539 451 375 946 376 205 403 356 553 643 497 824 756 515
PointCNN [15] point - 458 | 577 611 356 321 715 299 37.6 328 319 944 285 164 216 229 484 545 456 755 709 475
PointConv [39] point | 61.0 66.6 781 759 699 644 822 475 779 564 504 953 428 203 586 754 661 753 588 902 813 64.2
SparseConvNet [8] | voxel 69.3 72.5 647 821 84.6 721 869 533 754 603 614 955 572 325 710 870 724 823 628 934 865 683
KPConv [36] point 69.2 68.4 847 758 784 647 814 473 772 605 594 935 450 181 587 805 69.0 785 614 832 819 632
MinkowskiNet [4] | voxel | 722 736 859 818 832 709 840 521 853 660 643 951 544 286 73.1 893 675 772 683 874 852 727
SegGCN [16] point - 58.9 833 73.1 539 514 789 448 467 573 484 936 396 6.1 501 507 594 700 563 874 77.1 493
RandLA-Net [10] | point B 64.5 778 731 699 577 829 446 736 477 523 945 454 269 484 749 618 738 599 827 792 62.1
PointASNL [42] point 63.5 66.6 703 78.1 75.1 655 83.0 47.1 769 474 537 951 475 279 635 698 675 751 553 816 80.6 703
JSENet [11] point - 69.9 88.1 762 821 66.7 800 522 792 613 60.7 935 492 205 576 853 69.1 758 652 872 828 649
RECR [7] point 70.2 889 745 813 672 818 493 815 623 610 947 470 249 594 848 705 779 646 892 823 611
CBL [34] point - 70.5 769 775 809 687 820 439 812 66.1 59.1 945 515 171 633 856 720 796 66.8 889 847 689
Ours' ‘ point ‘ 73.4 71.8 ‘ 845 751 81.6 714 851 528 819 623 603 955 529 280 659 868 713 785 60.1 90.0 844 68.1

Table 5. Quantitative results on ScanNetV2 [5].
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Figure 2. More visualization compared with PointTransformer [46]. Zoom-in for a better view.
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