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This supplementary document is organized as follows:
Sec. 1 presents the discussion about the clean image priors.
Sec. 2 presents architecture of the supervised degradation
attention module.
Sec. 3 presents more implementation details.
Sec. 4 presents the latent visualization.
Sec. 5 presents more visual comparison results.
Sec. 6 presents the broader impacts.

1. Discussion about the clean image priors
In our proposed ingredients-oriented degradation refor-

mulation framework (IDR), the correlation among diverse
image restoration tasks are explored for task-scalable learn-
ing. Beyond that, it is worth noting that the natural oppo-
sition [2] between the corrupted images and clean images
provides another avenue, which are two roads lead to Rome.

Prior work [1] has already dedicated to the development
of this line, and advocated to learn normal image priors for
handling various image restoration tasks. However, several
problems have been exposed: a) it need auxiliary network to
pre-generate pseudo clean images at inference time to pro-
vide normal image priors; b) requires fine-tuning on down-
stream tasks; c) inflexibility to arbitrary image sizes as fixed
number of prior queries. Therefore, it remains a challenge
to obtain generalizable and convenient normal image priors
in context of various degradations.

Table 1. Comparison experiments on the clean image priors.

Methods Rain100L SOTS BSD68 GoPro LOL
TAPE [1] 29.67 22.16 30.18 24.47 18.97

clean 35.31 25.64 30.81 26.97 20.93
w/o. clean 35.63 25.24 31.60 27.87 21.34

To this end, we attempt to integrate the clean priors into
the IDR framework, via simply include the clean images
during training, and establish the corresponding clean prior
hub Tclean ∈ RN×Cd as other degradations in the meta-
prior learning module. Unfortunately, the overall degra-
dation removal performance benefits poor little from the
participation of clean images, as shown in Table 1. We

present the t-SNE statistics of the learned clean prior em-
beddings and degraded prior embeddings in the main body
of the paper, where the apparent distinctions are observed.
Therefore, how to collaborate the correlation among di-
verse degradations and the opposition between the nor-
mal clean images and degraded images deserves further
investigation.

2. Supervised degradation attention module
We present the architecture of the supervised degrada-

tion attention module (SDAM) in Fig. 1 as its similar struc-
ture inspired by [3]. Their key differences are summarized
as follows. The intention of the SDAM is to intensify the
latent degradation while dilute the background content for
content-agnostic prior learning, which is completely differ-
ent from [3]. The supervision of the SDAM lies in the de-
graded images instead of clean images. The position of
the SDAM is mainly concentrated in the encoder stage of
the network to achieve better degradation perception, rather
than the decoder stage in [3]. Note that we stop the gra-
dients on the input degraded features to prevent the inferior
impact on the backbone network, while only the intensified
degraded features are needed.

Figure 1. Supervised degradation attention module.

3. More implementation details
We implement our IDR with a trimmed restormer back-

bone to verify the model scalability under the constrained
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capacity bottleneck and to be consistent with previous all-
in-one fashion methods in terms of model size. Specifically,
from stage-1 to stage-4, the number of transformer blocks
are [2,3,3,4], attention heads are [1,2,4,8], and the number
of channels are [32,64,128,256]. The refinement stage con-
tains 2 blocks. The capability of the prior hub N is empiri-
cally set as 24, as shown in Table 3.

We embed two meta-prior learning modules (MPL) at
the encoder stage and one at the decoder stage. Table 2
presents the ablation experiments on the distribution of the
MPL. One can see that the complete decoder assignment
(i.e. 3D) leads to the worst performance, as inconspicu-
ous degradations contribute weakly to the knowledge col-
lection, compared to the preceding encoder stage.

Table 2. Ablation experiments on the distribution of the MPL.

Methods Rain100L SOTS BSD68 GoPro LOL
3E 35.15 25.81 31.41 27.23 21.70

2E+1D 35.63 25.24 31.60 27.87 21.34
3D 32.88 23.29 31.13 26.63 21.61

Table 3. Ablation experiments on the capability of the prior hub.

Capability N Rain100L SOTS BSD68 GoPro LOL
12 35.51 24.60 31.49 28.00 21.18
24 35.63 25.24 31.60 27.87 21.34
36 35.48 24.76 31.61 27.99 21.61
48 35.69 24.56 31.62 28.01 21.25

Table 4. Ablation experiments on the components design.

Methods Rain100L SOTS BSD68 GoPro LOL
a 34.73 25.26 31.37 27.42 21.51
b 34.46 25.33 31.41 27.24 21.19
c 35.01 24.98 31.45 27.48 21.01
d 35.27 25.13 31.52 27.45 20.99
e 35.51 25.28 31.48 27.69 21.21
f 35.63 25.24 31.60 27.87 21.34

Additionally, in Table 4, we provide a detailed supple-
ment to Table 4 of the main paper with metrics on each task.

4. Latent visualization
We visualize the latent representations inside the meta-

prior learning module on diverse image degradations in
Fig. 2. The latent representations include the input degraded
feature x, prior-oriented degradation representation hp, and
the output pseudo clean feature x′.

For x with different degradation types, it typically suf-
fer from severe corruption, such as intensive rain streaks or
noise, unclear information affected by low-light and hazy
conditions, and blurry scenes.

For hp with different degradation types, it is constructed
via the aggregation of the learned prior embeddings P . It
can be observed that the extracted prior-oriented degrada-
tion representations contain much more degradation-related

Figure 2. Latent visualization in the meta-prior learning module.
Please zoom in for details.

information with diluted background content, compared to
x. For example, the rain streaks and the noise are much
more decoupled from the backgrounds, compared with their
entangled state in x. Additionally, the unclear regions of the
low-light and hazy conditions are well recognized, such as
the discrete bowling balls and the underlying main body of
the building. While the hp for blur reflects more potential
directionality compared to x, e.g. up and down.

For x′ with different degradation types, it alleviates the
corruption on the feature to some extent. For example, the
rain streaks and the noise are significantly reduced. The
contrast of the low-light and hazy features is improved. The
motion effect of the blurry features is suppressed.

5. Additional visual comparison results
In this section, we provide more visual comparison re-

sults on the foregoing five image restoration tasks in Figs. 3
to 7, and an additional unknown task (i.e. under-display
camera image restoration) in Fig. 8, demonstrating the scal-
ability and generalization ability of our method.

6. Broader impacts
Our work provides a novel perspective to explore the

correlation among diverse image restoration tasks to realize
the intrinsic degradation ingredients, and exhibits favorable
generalization ability and scalability. In a broader vision,
it potentially release the redundant model deployments in
real world scenarios, and avoid the model switching when
faced with complex environments. We note that it sincerely
benefits a lot of applications with limited resources, such
as mobile photography and 24/7 surveillance. However, the
privacy of our method may raise potential concerns when
used improperly. For example, some important occlusions
in the original images may be removed, resulting in the dis-
closure of private information. Therefore, how to ensure the
user-agnostic security of our method needs further research.



Figure 3. Visual comparison with state-of-the-art methods on Rain100L dataset. Please zoom in for details.

Figure 4. Visual comparison with state-of-the-art methods on SOTS dataset. Please zoom in for details.
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Figure 5. Visual comparison with state-of-the-art methods on BSD68 dataset. Please zoom in for details.

Figure 6. Visual comparison with state-of-the-art methods on GoPro dataset. Please zoom in for details.



Figure 7. Visual comparison with state-of-the-art methods on LOL dataset. Please zoom in for details.

Figure 8. Visual comparison with state-of-the-art methods on UDC (TOLED) dataset. Please zoom in for details.
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