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Figure 1. The visualization of the output of our proposed GOAT in action quality assessment. Our approach can focus on where the athletes
perform effective movements with clear formations while it can also ignore the redundant part such as all actors are under-water.

* indicates the corresponding author.

1. Visualization
We provide more visualizations in this section. Figure 1

shows the visualization of the output of the GOAT, which
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Figure 2. The additional visualizations of the prediction results of our formation detector method. The green polygons represent prediction
results and the yellow polygons with blue edges are the ground truth. The results show that our approach can detect the positions of actors
and distinguish whether the athlete is the formation vertex or not, which guarantees the reliability of the formation features.

Figure 3. An visualization of our action segmentation experiments. Acro., Up. and Low. represent Acrobatic, Upper and Lower move-
ments. R1., R2. and R3. represents Required movements 1, 2 and 3.

demonstrates that it can focus on where the athletes per-
form effective movements with clear formations and also
ignore the redundant part of the input videos. Figure 2
shows the visualization of the prediction result of our for-
mation detector method. It illustrates that our approach
distinguishes whether an athlete is the formation vertex
or not, which ensures the reliability of the formation fea-
tures. Figure 3 shows the results of action segmentation on
the LOGO dataset, which demonstrates the challenges our
dataset brings.

2. Computational Time Costs
In this section, we compare the inference time of the

mainstream AQA methods mentioned in our paper with our

Table 1. Comparisons of the inference time with existing AQA
methods on LOGO.

Method Inference Time (s)

USDL [6] 40.39
USDL [6]+GOAT 40.40
CoRe [9] 40.39
CoRe [9]+GOAT 40.40
TSA [8] 40.41
TSA [8]+GOAT 40.51

approaches. All methods have experimented with the same
settings. As shown in Table 1, the increase in inference time
after the introduction of GOAT is minimal, which proves the
efficiency of our proposed GOAT. Most of the operations



Figure 4. The pipeline of Actor Relation Graphs for group activity
recognition.

Table 2. Comparisons of AQA performance with ARG on LOGO.
The higher ρ, the lower R-ℓ2, the better performance.

Method ρ ↑ R-ℓ2(×100) ↓

ARG [7] 0.3549 5.7778

USDL [6]+GOAT 0.4620 4.8739
CoRe [9]+GOAT 0.4935 5.0716
TSA [8]+GOAT 0.4855 5.3943

in GOAT are matrix operations, which can be efficiently
completed on the GPU. In the inference stage, most of the
computing time is spent on the feature extraction part of the
backbone. Because I3D contains a large number of convo-
lutional layers, bringing high computational time costs.

3. Experiments
This section presents some experimental results not pre-

sented in our paper. To proves the effectiveness of our tem-
poral fusion strategy, we also use the Actor Relation Graphs
(ARG) from [7] to directly predict the scores without us-
ing the features from the video backbone, which means we
only use the spatial information for prediction. Figure 4
shows the pipeline of ARG. Specifically, we replace the lin-
ear layer used to predict group activity in the last part of
the original pipeline with another linear layer to predict the
scores. As shown in Table 2, our method achieves better
results than just using spatial information for score predic-
tion.

4. Annotation Details
In this section, we systematically introduce the annota-

tion details of LOGO, which includes the annotation tools
and the labeling rules. Labeled video samples are provided
in the accompanying folder.

4.1. Annotation Tools

The annotation tools we use are shown in Figure 5. We
use COIN annotation tools [5] to annotate the frame-wise
action types and the temporal boundaries for actions. We
use Labelme to annotate the formation labels, including the
coordinates of the formation vertexes and the number of
edges. The example in Figure 5 shows an annotation result
of a pentagon formation.

Figure 5. Annotation tools. The top half is COIN annotation tool,
and the lower half is Labelme.

4.2. Labeling Rules

Scores. We collect the scores for each video from the
official website of FINA, which include three sub-scores,
and one final score. All scores have been double-checked.

Actions. We define 12 types of actions under the guid-
ance of professional athletes. We define how the action is
performed and its boundaries for each type. For example,
for the action type of “Upper”, it means all athletes per-
form movements that are performed by the upper body in
the scene. We use the first frame when everyone emerges
from the water (everyone only needs to emerge a little bit)
as the start frame of the annotation, and the first frame be-
fore everyone is submerged or enters a floating state as the
end frame. To ensure that all annotators have a consistent
labeling method, we iteratively update the definitions of all
actions and boundaries until the annotation results of the
annotators are unified.

Formations. The formation labels consist of the edges
and the coordinates of formation vertexes as shown in the
lower part of Figure 5. To unify the annotations, we de-
fine 17 kinds of formation polygons, which are generated
iteratively during the annotation process.



5. Implementation Details
5.1. Action Quality Assessment

The attention block of GOAT has 8 heads and 4 layers.
For the SWIN features, we follow [4] to sample frames with
a stride of 2 along the temporal axis, and each clip contains
32 frames. We also use warm-up strategy [3] during the
training stage. We fix the image size to 224 × 224. We fix
the crop size of RoIAlign to 5 × 5. The number of “Free”
events and “Technical” events in the training set and testing
set are close to 1:1. Our proposed methods were built on the
Pytorch toolbox and implemented on a system with A100.

5.2. Action Segmentation

Sampling Strategy. In this session, we conduct action
segmentation with GOAT using MS TCN++ [2] as the base-
line. For GOAT, we adopt the same sampling strategy as our
AQA experiment, we sample 5406 frames for each video
and split them into 540 snippets that contain 16 continuous
frames with a stride of 10 frames to extract group features.
For I3D, we sample all frames in videos and take 16 con-
textual frames around each frame. We take 32 contextual
frames for each frame to extract SWIN features.

Experimental Setting. The GOAT includes two com-
ponents: group-aware GCN and temporal-fusion attention.
The original temporal-fusion attention acquires group fea-
ture to be frame-wise since it asserts sequence length of
video embeddings of “query”, and “key” to be the same,
which comes with a huge computation cost. To address this,
we remove the BatchNorm block and residual block from
temporal-fusion attention. Besides, we make the frame-
wise feature serve as “query” and the video embeddings
from group-aware GCN serve as “key” and “value”. We
use only one layer of GCN. In the training stage, we split
videos into 75 percent for training and 25 percent for evalu-
ation. We implemented and trained these action segmenta-
tion methods with the Pytorch toolbox and run on a Linux
machine with Nvidia GeForce RTX 3090.

6. Challenges of LOGO
We show current SOTA results on mainstream AQA

datasets below to prove the challenges of LOGO. We use
CoRe and TPT [1]) on MTL-AQA, AQA-7, FineDiving,
and LOGO.

Dataset MTL-AQA AQA-7 FineDiving LOGO

ρ ↑ /R−ℓ2(×100) ↓ CoRe 0.9512 / 0.2600 0.8401 / 2.12 0.9061 / 0.3615 0.4712 / 5.4086
ρ ↑ /R−ℓ2(×100) ↓ TPT 0.9607 / 0.2378 0.8715 / 1.68 0.9182 / 0.3527 0.4732 / 5.3987
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