
Layout-based Causal Inference for Object Navigation
—–Supplements—–

Sixian Zhang1,2, Xinhang Song1,2, Weijie Li1,2, Yubing Bai1,2, Xinyao Yu1,2, Shuqiang Jiang1,2

1Key Lab of Intelligent Information Processing Laboratory of the Chinese Academy of Sciences (CAS),

Institute of Computing Technology, Beijing 2University of Chinese Academy of Sciences, Beijing

{sixian.zhang, xinhang.song, weijie.li, yubing.bai, xinyao.yu}@vipl.ict.ac.cn
sqjiang@ict.ac.cn

1. Calculation Details
In our paper, the object layout is defined as the set

D = {θi}Ki=1, where K is the number of object cate-
gories. The object layout D is composed of K context dis-
tribution of each object category. Each context distribution
θi = (θi,j)

K
j=1 is assumed to follow the Dirichlet distribu-

tion Dir (αi), i.e. θi ∼ Dir (αi). Therefore, the probabil-
ity density function of θi can be calculated as:

p (θi|αi) = Dir (αi) =
Γ
(∑K

j=1 αi,j

)
∏K

j=1 Γ (αi,j)

K∏
j=1

θ
αi,j−1
i,j (1)

where
∑K

j=1 θi,j = 1, θi,j ≥ 0, αi = (αi,j)
K
j=1, αi,j > 0

is the hyperparameter, and the Γ (s) is the gamma function,
which is defined as:

Γ (s) =

∫ ∞

0

xs−1e−xdx, s > 0 (2)

To be simplified, we denote that:

B (αi) =

∏K
j=1 Γ (αi,j)

Γ
(∑K

j=1 αi,j

) (3)

Then the p (θi|αi) can be re-written as:

p (θi|αi) =
1

B (αi)

K∏
j=1

θ
αi,j−1
i,j (4)

The B (αi) can be regarded as the standardization factor.
Additionally, based on the property of probability density
functions:

∫
p (θi|αi) dθi = 1, then we have:

∫
1

B (αi)

K∏
j=1

θ
αi,j−1
i,j dθi =

1

B (αi)

∫ K∏
j=1

θ
αi,j−1
i,j dθi = 1

(5)

According to Eq. 5, the B (αi) can also be calculated as:

B (αi) =

∫ K∏
j=1

θ
αi,j−1
i,j dθi (6)

Based on the above descriptions, the calculation details
about the posterior distribution of θi (i.e. Eq. 4 in the main
manuscript) are deduced by:

p
(
θi|sti, αt

i

)
=

p (sti|θi) p (θi|αt
i)

p (sti|αt
i)

=
p (sti|θi) p (θi|αt

i)∫
p (sti|θi) p (θi|αt

i) dθi

=

∏K
j=1 θ

nt
−i,j

i,j
1

B(αt
i)
θ
αt

i,j−1

i,j∫ ∏K
j=1 θ

nt
−i,j

i,j
1

B(αt
i)
θ
αt

i,j−1

i,j dθi

=

∏K
j=1 θ

αt
i,j+nt

−i,j−1

i,j∫ ∏K
j=1 θ

αt
i,j+nt

−i,j−1

i,j dθi

(7)

Based on the Eq. 6, the Eq. 7 can be further deduced to:

p
(
θi|sti, αt

i

)
=

1

B
(
αt
i + nt

−i,j

) K∏
j=1

θ
αt

i,j+nt
−i,j−1

i,j

= Dir
(
θi|αt

i + nt
−i

) (8)

The above derivations detail the calculation of Eq. 4 in
the main manuscript.

2. Algorithms
The algorithms about the calculation process of the lay-

out estimator, the training process and the inference process
are shown in Alg. 1, Alg. 2 and Alg. 3, respectively.

1

Algorithm 1 Layout estimator (LE)

Input: The distribution parameter (αt
1, . . . , α

t
i, . . . , α

t
K),

where αt
i =

(
αt
i,j

)K
j=1

, the observation st, the detec-

tion results nt = (nt
i)

K
i=1, and the episode memory Φ

Output: The expectation of the posterior distribution of the
object layout wt, the layout gap Dt

∆, updated parameter
(αt

1, . . . , α
t
i, . . . , α

t
K)

1: for all i← {1, . . . ,K} do
2: if nt

i > 0 and st is not in Φ then
3: Get context information (sti, n

t
−i) of object ci

4: Get prior distribution p (θi|αt
i) = Dir (θi|αt

i)
5: Compute the posterior distribution

p(θi|sti, αt
i) = Dir(θi|αt

i + nt
−i)

6: Compute the layout gap of object ci
Dt

∆,i = KL (p (θi|sti, αt
i) ||p (θi|αt

i))

7: Update the parameters: αt+1
i ← αt

i + nt
−i

8: else
9: p(θi|sti, αt

i) = p (θi|αt
i) = Dir (θi|αt

i)
10: Dt

∆,i = 0

11: αt+1
i ← αt

i

12: Compute the expectation wt of p(θi|sti, αt
i) based on

the Eq. 6 in the main manuscript
13: Compute the object layout Dt

∆ =
∑K

i=1 D
t
∆,i

Algorithm 2 Training

1: for all training episode τ ∈ Ttrain do
2: t← 0, Φ← ∅
3: (αt

1, . . . , α
t
i, . . . , α

t
K)← (α∗

1, . . . , α
∗
i , . . . , α

∗
K)

4: while the termination action is not issued do
5: Get the observation st, the target gt, and

the detection results nt = (nt
i)

K
i=1

6: wt, Dt
∆, (α

t+1
i)Ki=1← LE(st, nt, (αt

i)
K
i=1, Φ)

7: Encode wt into model π by ẑt = zt⊙ [wt × gt]
8: Take action from at = π(A|S = st, G = gt)
9: Φ← Φ ∪ {st}, t← t+ 1

10: Optimize model π by navigation loss Lnav

The training and inference stages are detailed in Sec. 4.3
of the main manuscript. The main difference between train-
ing and testing is the action prediction (marked in blue). In
the training stage, the agent adopts the fact prediction of the
navigation model π, while in inference, since the fact pre-
diction could be biased by the effect of the experience Z,
our agent will not directly use the trained navigation model.
Alternatively, the agent first calculates the layout gap Dt

∆

and the counter-fact prediction āt. Then the proposed sTDE
removes the counter-fact prediction āt (i.e. effect of the ex-
perience) from the fact prediction at based on the layout
gap Dt

∆. Therefore, our agent adopts the de-biased predic-

Algorithm 3 Inference

Input: The hyperparameter threshold ε
1: for all testing episode τ ∈ Ttest do
2: t← 0, Φ← ∅
3: (αt

1, . . . , α
t
i, . . . , α

t
K)← (α∗

1, . . . , α
∗
i , . . . , α

∗
K)

4: while the termination action is not issued do
5: Get the observation st, the target gt, and

the detection results nt = (nt
i)

K
i=1

6: wt, Dt
∆, (α

t+1
i)Ki=1← LE(st, nt, (αt

i)
K
i=1, Φ)

7: Encode wt into model π by ẑt = zt⊙ [wt × gt]
8: Compute the fact at = π(A|S = st, G = gt)
9: Compute the counter-fact (effect of experience)

āt = π(A|do (S = s̄t, G = ḡt) , Z = Zst,gt)
10: Take action from sTDE(at)

sTDE(at) = at −ReLU(Dt
∆ − ε) · āt

11: Φ← Φ ∪ {st}, t← t+ 1

tion sTDE(at) for navigation.
The calculation of the layout estimator (LE) is shown in

Alg. 1. Note that our method also adds a memory Φ to store
observations. The memory is designed to prevent repetitive
observations (e.g. when the agent gets stuck in a dead-end
or spinning in place), which may result in biased estimates
of the object layout.

3. Supplements of Experimental Details
3.1. Experimental Setup

Datasets. We utilize the AI2THOR [9], RoboTHOR [4]
and the Gibson [14] in the Habitat simulator [12] for evalua-
tion. Specifically, the AI2THOR simulator is widely used in
the learning-based navigation methods [6, 7, 10, 13, 15–17],
which contains 120 indoor 3D synthetic rooms in four
types: kitchen, living room, bedroom and bathroom. For
each type, we employ 20 rooms for training, 5 for valida-
tion and 5 for testing. Following the previous object goal
navigation works [6, 7, 16], we choose the following goals
for each type of room in AI2THOR [9]: 1) Kitchen: Fridge,
Light Switch, Pot, Toaster, Coffee Machine, Sink, Pan, Stove
Burner, Kettle, Microwave, Garbage Can. 2) Living Room:
Floor Lamp, Chair, Plate, Light Switch, Garbage Can, Lap-
top, Remote Control, Book, Television, Desk Lamp. 3)
Bedroom: Book, Light Switch, Bowl, Desk Lamp, Laptop,
Chair, Alarm Clock, Garbage Can. 4) Bathroom: Light
Switch, Garbage Can, Sink, Cell Phone.

The environment of RoboTHOR contains multi-rooms,
thus, we denote each environment as an apartment. The
RoboTHOR consists of 89 apartments, where 75 in train/val
(60 for training and 15 for validation), 4 in test-dev (which
are used for validation in the real world) and 10 in test-
standard (blind physical test set). Since the test-dev and
test-standard are not public, we choose the train/val for eval-

Table 1. The comparisons of different training strategies. The π denotes the fact navigation model at = π(A|S = st, G = gt), while the
π̄ denotes the counter-fact model āt = π(A|do

(
S = s̄t, G = ḡt

)
, Z = Zst,gt), whose prediction is only affected by the experience Z.

ID Training do (S,G)
Navigating with at Navigating with āt (experience) Navigating with sTDE

(
at
)

SR↑ (%) SPL↑ (%) DTS↓ (m) SR↑ (%) SPL↑ (%) DTS↓ (m) SR↑ (%) SPL↑ (%) DTS↓ (m)

I Only train π
zero

71.10±0.26 39.13±0.19 0.47±0.01
25.46±0.16 13.08±0.19 1.15±0.01 72.03±0.29 39.97±0.16 0.48±0.02

random 32.08±0.16 16.66±0.13 0.97±0.01 72.13±0.36 39.92±0.15 0.47±0.02

II Separately train π and π̄
zero

71.10±0.26 39.13±0.19 0.47±0.01
67.73±0.11 38.64±0.13 0.56±0.01 75.15±0.14 41.64±0.21 0.45±0.02

random 68.43±0.22 38.75±0.11 0.53±0.01 75.25±0.11 41.69±0.19 0.46±0.02

III Alternatively train π and π̄
zero

71.40±0.37 39.11±0.44 0.49±0.02
68.43±0.27 36.42±0.17 0.55±0.02 74.95±0.38 41.68±0.23 0.47±0.02

random 69.76±0.33 35.31±0.19 0.52±0.02 75.03±0.69 41.48±0.44 0.46±0.03

uation, where 60 for training, 5 for validation and 10 for
testing. Different from AI2THOR, the set of the target ob-
jects is basically consistent among different apartments in
RoboTHOR. Therefore, we consider 12 object categories
as the target, involving: Book, Bowl, Chair, Plate, Televi-
sion, Floor Lamp, Garbage Can, Alarm Clock, Desk Lamp,
Laptop, Pot, CellPhone.

The Gibson dataset consists of full buildings, which also
contain multi-rooms. The Gibson is widely used for the
evaluations of the map-based methods [3, 11]. Our experi-
mental settings on Gibson are the same as [3]. We adopt 25
train/ 5 test scenes from the Gibson tiny split whose seman-
tic annotations are available from [2], and consider 6 goal
categories: Chair, Couch, Potted Plant, Bed, Toilet, Televi-
sion.

Evaluation metrics. We evaluate ObjectNav perfor-
mance with SR, SPL and DTS metrics.

SR (Success Rate): SR evaluates the success rate of the
agent in finding the target object, which is formulated as
SR = 1

N

∑N
i=1 Si, where N is the number of total episodes

and Si is an indicator representing whether the i-th episode
is successful.

SPL (Success weighted by Path Length): SPL further
considers both the success rate and the path length. It is
defined as SPL = 1

N

∑N
i=1 Si

l∗i
max(li,l∗i)

, where l∗i refers

to the shortest path calculated by the simulator and li is the
path length in the i-th episode.

DTS (Distance to Goal): DTS measures the distance
Li,g of the agent towards the goal at the end of the episode.
It is defined as DTS = 1

N

∑N
i=1 max (Li,g − ξ, 0), where

ξ = 1m is the success threshold (the successful episode
is defined in the Sec. 3 of the main manuscript). For a
successful episode, the DTS is 0 [1].

3.2. More Evaluations

Comparisons of different training strategies. Initially,
we train the model π during the training stage (see the set-

ting I in Tab. 1) as most previous methods do [6, 7, 15, 16].
In the inference, we construct the counterfactual prediction
āt (the effect of experience) by specifying a certain value
for the S, G and Z, then remove the biased prediction āt

from the original prediction (the fact at) based on the pro-
posed sTDE. However, the results indicate that the improve-
ments of sTDE are limited with only 1.03%, 0.79% gains
on SR and SPL metrics. For comparison, as shown in the
setting II in Tab. 1, we alternatively construct the coun-
terfactual prediction by training the counterfactual model
π(A|do (S = s̄t, G = ḡt) , Z = Zst,gt) with the same nav-
igation loss as the fact model π(A|S = st, G = gt). Based
on the trained counterfactual model π̄, the sTDE achieves
significant improvements by 4.15%, 2.56% and -0.01m on
SR, SPL and DTS.

To investigate the reason for such difference, we conduct
the ablation studies (see the column ‘Navigating with āt’ in
Tab. 1), and the results demonstrate that the counterfactual
model (setting I) obtained by directly assigning the value
has worse performance that the trained model (setting II).
We analyze that the original model π is trained to predict
actions based on the information from both experience Z
and other inputs (i.e. S and G), while it is not well-adapted
to predict actions relying on information from only one side.
Therefore, the unseen pattern (directly assigning values in
the original model) is unfamiliar to the trained model, thus
the counterfactual model obtained by assigning values can-
not precisely reflect the situation that the agent navigates to
the target only with experience.

The above experimental results seem to suggest that the
counterfactual model needs to be additionally trained, sep-
arate from the original training process. However, such a
setting would cause additional computational costs. Mo-
tivated by the dropout operation, we randomly mask the
value of S and G as if the π and π̄ are alternatively trained
(see the setting III in Tab. 1). Note that the trained π and
π̄ have different parameters in setting II, while they share
same parameters in setting III. This modified setting (set-
ting III) has the same computational costs as the original

Target: CellPhone (Chair, Laptop, GarbageCan, Book, Television)

Baseline Ours Baseline Ours

Target: StoveBurner (Pan, Pot, Sink, Toaster, Microwave)

Baseline Ours

Target: Book (Chair, Laptop, GarbageCan, CellPhone, RemoteControl)

Baseline Ours

Target: Microwave (GarbageCan, Fridge, Toaster, Sink, Chair)

Baseline Ours

Target: CellPhone (Chair, Laptop, GarbageCan, Book, Television)

Baseline Ours

Target: Pan (StoveBurner, Pot, Toaster, Sink, Microwave)

Figure 1. Visualization of trajectories in AI2THOR [9]. The trajectories of successful episodes are illustrated with green and blue colors,
where green refers to the beginning, and blue represents the end. In contrast, the trajectories of failed episodes are shown with yellow
and red colors, where yellow denotes the beginning, and red represents the end. The target object and the top 5 objects with the highest
co-occurrence frequency (arranged from high to low) with the target object in the training environments are also annotated in the figure.

setting (setting I), while achieving similar performances as
the additional training setting (setting II) in both navigating
with āt and navigating with sTDE. Therefore, we adopt the
training strategy (setting III) that randomly masks the S and
G to train our model.

Additionally, the results indicate that under our train-
ing strategy, the counterfactual prediction āt obtained by
the intervention and counterfactual operations has practi-
cal meanings, which represent the situation of navigating
only with experience, and achieves reasonable performance
(comparing setting III and setting II in both ‘Navigating
with āt’ and ‘Navigating with sTDE (at)’).

Comparison with other baselines. As shown in Tab. 2
(I, II), we conducted more comparisons of adding our sTDE
into EmbCLIP [8] in two settings: 1) only training with

Table 2. More comparisons with other baselines: (I) baseline with
CLIP backbone. (II) baseline with pre-training in ProcTHOR.

ID Method SR(%) SPL(%)

Results in RobTHOR (val)

I
1 EmbCLIP 52.22 25.99
2 EmbCLIP + sTDE 57.37(5.15↑) 26.81(0.82↑)

Results in RobTHOR (val) with pre-trained in ProcTHOR

II
3 EmbCLIP (pre-train w/o fine-tune) 51.33 22.20
4 EmbCLIP (pre-train w/ fine-tune) 66.39 27.44
5 EmbCLIP (pre-train w/ fine-tune)+sTDE 67.73(1.34↑) 27.77(0.33↑)

RoboTHOR (60 scenes) and 2) pre-training on large-scale
datasets ProcTHOR [5] (10K scenes). The results show that
under limited data (case I), adding our sTDE also gains no-
table improvement, while, when large training data is avail-

Baseline

Target: GarbageCan (Chair, Television, Laptop, AlarmClock, Bowl)

Target: Television (RemoteControl, Chair, GarbageCan, Bowl, Pot)

Target: AlarmClock (Chair, Laptop, DeskLamp, Book, GarbageCan)

Target: Chair (Bowl, Laptop, Television, DeskLamp, GarbageCan)

Target: Laptop (Chair, AlarmClock, Book, GarbageCan, Bowl)

Ours

Baseline Ours

Baseline Ours

Baseline

Baseline

Ours

Ours

Figure 2. Visualization of trajectories in RoboTHOR [4]. The annotations are consistent with that of Fig. 1.

able (case II), our method is still effective but the gains are
limited. We analyze that large-scale datasets provide more
diverse layouts, which make the learned experience more
general, and thus obtain less benefit from our de-biased
method.

Our sTDE attempt to improve the model generaliza-
tion from the algorithm, which is less concise and efficient
than directly scaling up the training data e.g. ProcTHOR.
However, compared to the huge computation cost for pre-
training, the advantages of our sTDE are that it is parameter-
free and easy to plug in many methods, even including those
pre-trained models. Besides, our sTDE is orthogonal to
the data-based method and can further improve the perfor-
mance of data-based models.

Case study. We further visualize the trajectories of the
agent in both AI2THOR [9] and RoboTHOR [4] simula-
tors. The baseline model is chosen as the ORG [6]. Be-
sides, we annotate the top 5 object categories with the high-
est frequency of co-occurrence with the target object in the
training environments, and these objects are arranged from
high to low based on their co-occurrence frequency. These
co-occurrence objects reflect the context layout of the target
object in the training environments. As shown in Fig. 1 and
2, the co-occurring objects are often observed at the loca-
tion where the agent stops navigating in the failed episodes
(see the red arrows). The visualization results indicate that
the baseline agent is prone to get stuck in the locations
where the target object usually appears in the training en-
vironments. Furthermore, the results demonstrate that the
agent is easily influenced by the experience learned in train-
ing, which results in the failure of navigation. However,
our method appropriately eliminates the effect of experi-
ence (Z → A) and encourages the exploration-based ef-
fect (S → A and G → A) as shown in the causal graph
in the main manuscript. Therefore, the agent, driven by our
method, utilizes the learned experience more wisely, and
tends to be more exploratory rather than suffering from the
biased experience. Consequently, our agent achieves better
performance and navigates with more efficient trajectories.

4. Limitation and Societal Impacts

4.1. Limitation Analysis

We will discuss the limitation of our method from the
following two aspects:

(1) Based on the proposed causal graph, we argue that
the bias of action prediction comes from the negative ef-
fect of experience. The proposed causal graph focuses on
emphasizing the effects of experience while omitting other
factors (e.g. hidden state ht−1 of LSTM), which may also
affect the action prediction. Therefore, in future work, we

will introduce more factors into our causal graph and ana-
lyze their potential influences.

(2) The proposed object layout estimator calculates the
posterior context distribution based on the continuous ob-
servations. To collect high-quality observations, the agent
needs to navigate efficiently without getting stuck or back-
tracking. In this paper, we construct a memory (see the Φ
in the Alg.1) to avoid the influence of invalid observations.
However, such memory can only eliminate invalid obser-
vations, but cannot increase valid observations. Therefore,
in future work, we will utilize additional measures (e.g.
adding extra exploration rewards) to encourage the agent
to obtain more valid observations.

4.2. Potential Negative Societal Impacts

Our method is a general method for improving the nav-
igation abilities of object-oriented navigation (ObjectNav)
task. The prevailing methods place the agent in 3D virtual
environments and train the agent with reinforcement learn-
ing. Some virtual environments (e.g. AI2THOR) are con-
structed manually with the game engines (e.g. Unity), while
other virtual environments (e.g. Matterport3D) are 3D re-
constructions of real-world environments, which have the
potential negative impacts of exposing the privacy on room
layout. Additionally, the technologies of ObjectNav task
are gradually intended to be applied to some service robots
which can make human life more convenient and comfort-
able. However, the activities of these robots may also pro-
duce some hazards, which will cause damage to persons or
societal property. Therefore, further researches need to en-
sure the positive impact of this ObjectNav technology on
the society.

References
[1] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark

Johnson, Niko Sünderhauf, Ian D. Reid, Stephen Gould, and
Anton van den Hengel. Vision-and-language navigation: In-
terpreting visually-grounded navigation instructions in real
environments. In 2018 IEEE Conference on Computer Vi-
sion and Pattern Recognition, CVPR 2018, Salt Lake City,
UT, USA, June 18-22, 2018, pages 3674–3683. IEEE Com-
puter Society, 2018. 3

[2] Iro Armeni, Zhi-Yang He, JunYoung Gwak, Amir R Zamir,
Martin Fischer, Jitendra Malik, and Silvio Savarese. 3d scene
graph: A structure for unified semantics, 3d space, and cam-
era. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 5664–5673, 2019. 3

[3] Devendra Singh Chaplot, Dhiraj Gandhi, Abhinav Gupta,
and Russ R. Salakhutdinov. Object goal navigation using
goal-oriented semantic exploration. In Advances in Neu-
ral Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020. 3

[4] Matt Deitke, Winson Han, Alvaro Herrasti, Aniruddha
Kembhavi, Eric Kolve, Roozbeh Mottaghi, Jordi Salvador,
Dustin Schwenk, Eli VanderBilt, Matthew Wallingford, Luca
Weihs, Mark Yatskar, and Ali Farhadi. Robothor: An
open simulation-to-real embodied AI platform. In 2020
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2020, Seattle, WA, USA, June 13-19,
2020, pages 3161–3171, 2020. 2, 5, 6

[5] Matt Deitke, Eli VanderBilt, Alvaro Herrasti, Luca Weihs,
Jordi Salvador, Kiana Ehsani, Winson Han, Eric Kolve,
Ali Farhadi, Aniruddha Kembhavi, and Roozbeh Mottaghi.
Procthor: Large-scale embodied AI using procedural gener-
ation. 2022. 4

[6] Heming Du, Xin Yu, and Liang Zheng. Learning object re-
lation graph and tentative policy for visual navigation. In
Computer Vision - ECCV 2020 - 16th European Conference,
Glasgow, UK, August 23-28, 2020, Proceedings, Part VII,
pages 19–34, 2020. 2, 3, 6

[7] Heming Du, Xin Yu, and Liang Zheng. Vtnet: Visual trans-
former network for object goal navigation. In 9th Interna-
tional Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021, 2021. 2, 3

[8] Apoorv Khandelwal, Luca Weihs, Roozbeh Mottaghi, and
Aniruddha Kembhavi. Simple but effective: CLIP embed-
dings for embodied AI. In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, CVPR 2022, New
Orleans, LA, USA, June 18-24, 2022, pages 14809–14818.
IEEE, 2022. 4

[9] Eric Kolve, Roozbeh Mottaghi, Daniel Gordon, Yuke Zhu,
Abhinav Gupta, and Ali Farhadi. AI2-THOR: an interactive
3d environment for visual AI. CoRR, abs/1712.05474, 2017.
2, 4, 6

[10] Bar Mayo, Tamir Hazan, and Ayellet Tal. Visual naviga-
tion with spatial attention. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2021, virtual, June
19-25, 2021, pages 16898–16907, 2021. 2

[11] Santhosh Kumar Ramakrishnan, Devendra Singh Chap-
lot, Ziad Al-Halah, Jitendra Malik, and Kristen Grauman.
PONI: potential functions for objectgoal navigation with
interaction-free learning. In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, CVPR 2022, New
Orleans, LA, USA, June 18-24, 2022, pages 18868–18878.
IEEE, 2022. 3

[12] Manolis Savva, Jitendra Malik, Devi Parikh, Dhruv Batra,
Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik
Wijmans, Bhavana Jain, Julian Straub, Jia Liu, and Vladlen
Koltun. Habitat: A platform for embodied AI research. In
2019 IEEE/CVF International Conference on Computer Vi-
sion, ICCV 2019, Seoul, Korea (South), October 27 - Novem-
ber 2, 2019, pages 9338–9346. IEEE, 2019. 2

[13] Mitchell Wortsman, Kiana Ehsani, Mohammad Rastegari,
Ali Farhadi, and Roozbeh Mottaghi. Learning to learn how to
learn: Self-adaptive visual navigation using meta-learning.
In IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR 2019, Long Beach, CA, USA, June 16-20,
2019, pages 6750–6759, 2019. 2

[14] Fei Xia, Amir Roshan Zamir, Zhi-Yang He, Alexander Sax,
Jitendra Malik, and Silvio Savarese. Gibson env: Real-world

perception for embodied agents. In 2018 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2018,
Salt Lake City, UT, USA, June 18-22, 2018, pages 9068–
9079. IEEE Computer Society, 2018. 2

[15] Wei Yang, Xiaolong Wang, Ali Farhadi, Abhinav Gupta, and
Roozbeh Mottaghi. Visual semantic navigation using scene
priors. In 7th International Conference on Learning Rep-
resentations, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019, 2019. 2, 3

[16] Sixian Zhang, Xinhang Song, Yubing Bai, Weijie Li, Yakui
Chu, and Shuqiang Jiang. Hierarchical object-to-zone graph
for object navigation. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages
15130–15140, October 2021. 2, 3

[17] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J. Lim,
Abhinav Gupta, Li Fei-Fei, and Ali Farhadi. Target-driven
visual navigation in indoor scenes using deep reinforce-
ment learning. In 2017 IEEE International Conference on
Robotics and Automation, ICRA 2017, Singapore, Singa-
pore, May 29 - June 3, 2017, pages 3357–3364, 2017. 2

	. Calculation Details
	. Algorithms
	. Supplements of Experimental Details
	. Experimental Setup
	. More Evaluations

	. Limitation and Societal Impacts
	. Limitation Analysis
	. Potential Negative Societal Impacts

