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Dataset
From

Scratch
w/o 2D

Guidance
I2P-MAE

ScanObjectNN [19] 86.34 87.52 90.11
ModelNet40 [23] 92.46 93.43 93.72
ShapeNetPart [25] 86.38 86.51 86.76
ModelNet40-FS [23] 91.20 95.00 95.50

Table 1. Effectiveness of Pre-training. We report the downstream
performance (%) of training from scratch and fine-tuning after
pre-training. ‘w/o 2D Guidance’ denotes the pre-training without
learning from 2D pre-trained models. We adopt the PB-T50-RS
split of ScanObjectNN and denote the 10-way 20-shot split for
few-shot classification as ModeNet-FS.

1. Implementation Details
In this section, we present the detailed model config-

uration and training settings for fine-tuning I2P-MAE on
downstream tasks. All experiments are conducted on a sin-
gle RTX 3090 GPU.

Shape Classification. For both ModelNet40 [23] and
ScanObjectNN [19], we fine-tune I2P-MAE for 300 epochs
with a batch size 32. We adopt AdamW [13] optimizer with
a learning rate 0.0005 and weight decay 0.05, and utilize
cosine scheduler with a 10-epoch warm-up. We append a
3-layer MLP after I2P-MAE’s encoder as the classification
head. For ScanObjectNN, we adopt max and average pool-
ing to respectively summarize the point tokens from the en-
coder, and concatenate the two global features along the fea-
ture dimension for the head. I2P-MAE takes 2,048 points
as input and adopts random scaling with rotation as data
augmentation. For ModelNet40, we element-wisely add the
two global features for the classification head. I2P-MAE
takes 1,024 points as input, and adopts random scaling with
translation as data augmentation.

Part Segmentation. On ShapeNetPart [25], we fine-tune
I2P-MAE for 300 epochs with a batch size 16. We also
adopt AdamW [13] optimizer with a learning rate 0.0002
and weight decay 0.00005, and utilize cosine scheduler with
a 10-epoch warm-up. For fair comparison, we experiment
with the same segmentation head and training settings as
Point-M2AE [27].

2. Additional Ablation Study

Effectiveness of Pre-training. In Table 1, we compare
the performance on different downstream tasks between
training from scratch and fine-tuning after pre-training.
For ScanObjectNN [19], the pure 3D pre-training with-
out image-to-point learning (‘w/o 2D Guidance’) can im-
prove the classification accuracy by +1.09%, and our pro-
posed 2D-to-3D knowledge transfer further boosts the per-
formance by +2.59%. Similar improvement can be ob-
served on other downstream datasets, which demonstrates
the significance of the pre-training of I2P-MAE.

Pre-training with Limited 3D Data. In Figure 1, we
compare the performance of pre-training with deficient 3D
training data by curves, whose quantitive results are report
in Table 5 of the main paper. Guided by 2D pre-trained
models, I2P-MAE can acheive comparable performance to
Point-M2AE [27] with only half of the 3D data.

Learning Curves of Pre-training. In Figure 3 and 2, we
show the comparison of training I2P-MAE from scratch
and fine-tuning after pre-training on two shape classifica-
tion datasets. Our image-to-point pre-training can largely
accelerate the convergence speed during fine-tuning and the
final classification accuracy, indicating the effectiveness of
the 2D-to-3D knowledge transfer.
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Figure 1. Pre-training with Limited 3D Data. We randomly sample different ratios of 3D data in ShapeNet [4] for pre-training and report
the linear SVM accuracy on ModelNet40 [23]. I2P-MAE effectively alleviates the need for large-scale 3D data by 2D guidance.
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Figure 2. I2P-MAE Fine-tuning vs. Training from Scratch on
ModelNet40 [23]. We report the fine-tuning accuracy on Model-
Net40.

2D Pre-trained Models. In Figure 4, we compare the
guidance performance of 2D models with different ar-
chitectures and pre-trained methods on the OBJ-BG split
of ScanObjectNN. As shown, ViT [6] pre-trained by
CLIP [18] performs the best, which learns from 400 million
image-text pairs with more sufficient open-world semantics,
compared to the pre-training on the closed-set ImageNet-
1K [3, 24]. As the transformer [20] is expert at exploring
long-range dependencies, ViT and Swin [16] can capture
better global spatial cues from the multi-view depth maps
for image-to-point learning than ResNet [9].
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Figure 3. I2P-MAE Fine-tuning vs. Training from Scratch on
SacnObjectNN [19]. We report the fine-tuning accuracy on the
PB-T50-RS split of ScanObjectNN.

Projected View Number. In Table 2 (1st and 2nd rows),
we show how the number of projected views affect the per-
formance of I2P-MAE. As default, we project the point
cloud into 3 views along the x, y, z axes. For the view
number 1 and 2, we enumerate all possible projected views
along x, y, z axes, and report the highest results in the ta-
ble. As shown, using less views would harm the pre-training
performance, which constrains 2D pre-trained models from
‘seeing’ complete 3D shapes due to occlusion. Instead, the
3D network can learn more comprehensive high-level se-
mantics from the 2D representations of all three views.
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Figure 4. Different 2D Pre-trained Models. ‘Sup-IN’ denotes
the supervised pre-training on ImageNet-1K [5]. For ViT [6] and
Swin [16], we adopt the base-size models. For ResNet [9], we
utilize the 50-layer and 101-layer variants.

3D Attention Cloud and 2D-semantic Target. We first
investigate how to aggregate multi-view 2D attention maps
as the attention cloud for 2D-guided masking in Table 2
(3rd and 4th rows). Compared to assigning the maximum
or minimum score to a certain point, averaging the 2D at-
tention scores from different views achieves the best perfor-
mance. Then, we explore how to generate the 2D-semantic
targets from multi-view 2D features in Table 2 (5th row).
The results indicate that, concatenating 2D features between
different views performs better than averaging them, which
preserves more diverse 2D semantics for reconstruction.

Fine-tuning Settings. In Table 3, we experiment differ-
ent fine-tuning settings for downstream shape classification
on the two datasets. For the point tokens from the encoder,
‘Max Only’ and ‘Ave Only’ denote applying either max or
average pooling to summarize global features for the classi-
fication head. ‘Add’ or ‘Concat’ denotes to add or concate-
nate the two global features after max and average pooling.
We observe that, ‘Add’ and ‘Concat’ perform the best for
ModelNet40 [23] and ScanObjectNN [19], respectively.

3. Additional Related Work
Masked Autoencoders. To achieve more efficient
masked image modeling [1, 2, 24, 28], MAE [8] is firstly
proposed on 2D images with an asymmetric encoder-
decoder transformer [6]. The encoder takes as input a
randomly masked image and is responsible for extracting
its high-level latent representation. Then, the lightweight
decoder explores informative cues from the encoded
visible features, and reconstructs raw RGB pixels of
the masked patches. Given its superior performance on
downstream tasks, a series of follow-up works have been
developed to improve MAE with customized designs:
pyramid architectures with convolution stages [7], window

Projected
Views

3D Attention
Cloud

2D-semantic
Target

ModelNet40

2 Ave Concat 93.0
1 Ave Concat 92.9

3 Max Concat 93.3
3 Min Concat 92.8

3 Ave Ave 93.1
3 Ave Concat 93.4

Table 2. Different Image-to-Point Settings. ‘Ave’, ‘Max’, ‘Min’,
‘Concat’ denote different operations to aggregate multi-view 2D
representations. We report the linear SVM accuracy (%).

Settings ModelNet40 [23] ScanObjectNN [19]

Max Only 93.31 89.90
Ave Only 93.56 88.83

Add 93.72 89.20
Concat 93.23 90.11

Table 3. Fine-tuning Settings. We experiment different ap-
proaches to summarize global features of the encoder for down-
stream fine-tuning. We report the fine-tuning accuracy (%) on
ModelNet40 and the PB-T50-RS split of ScanObjectNN.

attention by grouping visible tokens [11], high-level targets
with semantic-aware sampling [10], and others [15].
Following the spirit, Point-MAE [17] and MAE3D [12]
extend MAE-style pre-training on 3D point clouds, which
randomly sample visible point tokens for the encoder and
reconstruct masked 3D coordinates via the decoder. Point-
M2AE [27] further modifies the transformer architecture to
be hierarchical for multi-scale 3D learning. Our proposed
I2P-MAE aims to endow masked autoencoding on point
clouds with the guidance from 2D pre-trained knowledge.
By introducing the 2D-guided masking and 2D-semantic
reconstruction, I2P-MAE fully releases the potential of
MAE paradigm for 3D representation learning.

4. Few-shot Classification

We fine-tune I2P-MAE for few-shot classification on
ModelNet40 [23] in Table 4. Following previous work [17,
26, 27], we adopt the same training settings and few-shot
dataset splits, i.e., 5-way 10-shot, 5-way 20-shot, 10-way
10-shot, and 10-way 20-shot. With limited downstream
fine-tuning data, our I2P-MAE exhibits competitive perfor-
mance among existing methods, e.g., +0.5% classification
accuracy to Point-M2AE [27] on the 10-way 20-shot split.



Method
5-way 10-way

10-shot 20-shot 10-shot 20-shot

DGCNN [22] 91.8 ± 3.7 93.4 ± 3.2 86.3 ± 6.2 90.9 ± 5.1
[P] DGCNN + OcCo [21] 91.9 ± 3.3 93.9 ± 3.1 86.4 ± 5.4 91.3 ± 4.6

Transformer [26] 87.8 ± 5.2 93.3 ± 4.3 84.6 ± 5.5 89.4 ± 6.3
[P] Point-BERT [26] 94.6 ± 3.1 96.3 ± 2.7 91.0 ± 5.4 92.7 ± 5.1
[P] MaskPoint [14] 95.0 ± 3.7 97.2 ± 1.7 91.4 ± 4.0 93.4 ± 3.5
[P] Point-MAE [17] 96.3 ± 2.5 97.8 ± 1.8 92.6 ± 4.1 95.0 ± 3.0
[P] Point-M2AE [27] 96.8 ± 1.8 98.3 ± 1.4 92.3 ± 4.5 95.0 ± 3.0

[P] I2P-MAE 97.0 ± 1.8 98.3 ± 1.3 92.6 ± 5.0 95.5 ± 3.0

Table 4. Few-shot Classification on ModelNet40 [23]. We report the average classification accuracy (%) with the standard deviation (%)
of 10 independent experiments. [P] denotes to fine-tune the models after self-supervised pre-training.

Method 1-epoch Time GPU Mem. Converge Time

Point-M2AE [27] 11 min 20,339 MiB 43.3 h
I2P-MAE 13 min 22,451 MiB 25.1 h

Table 5. Pre-training Efficiency Comparison. We test with a
batch size 64 on one RTX 3090 GPU.

5. Discussion
Other Ways using 2D Features? Besides serving as re-
construction target, the multi-view features from 2D pre-
trained models can also be utilized to assist the 3D-
coordinate reconstruction. To verify this, we back-project
the multi-view 2D features into 3D space, and integrate
them with corresponding point tokens before feeding into
the decoder. In this way, point tokens can leverage suffi-
cient 2D semantics to reconstruct 3D coordinates. The ex-
periments indicate that, by element-wise addition and con-
catenation with point tokens, the 2D features can boost the
3D learning over Point-M2AE [27] by +0.2% and +0.4%,
respectively, for linear SVM on ModelNet40 [23]. Such ap-
proach is helpful but inferior to 2D-semantic reconstruction
in I2P-MAE with +0.5% performance gain.

Training Resources by Running 2D Models? I2P-MAE
requires to concurrently run a pre-trained 2D model, which
introduces extra pre-training resources. In Table 5, we
compare the pre-training efficiency of I2P-MAE and Point-
M2AE. Although I2P-MAE consumes more 1-epoch time
and GPU memory, our method converges much faster and
takes less overall pre-training time.

I2P-MAE with CLIP-50 Performs Worse than Point-
M2AE? In Figure 4, I2P-MAE guided by CLIP’s [18]
ResNet-50 [9] backbone achieves lower classification ac-

curacy than the baseline Point-M2AE, which is resulted
from the following two aspects. 1) Intuitively, weaker 2D
pre-trained models would bring less improvements to I2P-
MAE, such as ResNet-50’s 84.0% compared to ViT’s [6]
87.1% in Figure 4. 2) To achieve higher pre-training effi-
ciency, we directly adopt projected depth maps as the input
for 2D models pre-trained by natural images. Such seman-
tic gap between natural and depth images might disturb the
multi-view 2D features and attention maps, especially the
weak CLIP-50. Thus, utilizing paired natural 2D images or
rendered depth maps for pre-training is expected to improve
the performance. We lease this as a future work.

Can 2D Pre-trained Models be Applied to Depth Maps?
The 2D models are normally pre-trained by ImageNet [5]
containing natural images, such as DINO [3] and Sim-
MIM [24] in Figure 4. For CLIP pre-trained by larger-scale
image-text pairs, its training data actually contains a num-
ber of depth maps from the Internet, so it provides better
guidance for I2P-MAE than other 2D models. To further
verify this, we sample a sub-set containing different cate-
gories from ShapeNet [4] and directly apply CLIP’s ViT
backbone for zero-shot classification on the depth maps. It
achieves more than 50% accuracy, indicating 2D the pre-
trained CLIP can recognize depth maps without training.

6. Additional Visualization
In Figure 5, we additionally visualize the input point

cloud, random masking, spatial attention cloud, 2D-guided
masking, and the reconstructed 3D coordinates, respec-
tively. As shown, the 2D-guided masking can preserve the
semantically important 3D geometries guided by the spatial
attention cloud (darker points indicate higher scores). In
this way, I2P-MAE can inherit more significant 2D knowl-
edge through the 2D-semantic reconstruction.
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Figure 5. Additional Visualization of I2P-MAE. Guided by the spatial attention cloud, I2P-MAE’s masking (the 4th and 9th columns)
preserves more semantically important 3D structures than random masking.
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