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Abstract

From the main paper, we design a χ-shape pattern to
match the training dynamics of a DNN and find Intermedi-
ate Attribute Samples (IASs) — samples near the attribute
decision boundaries. Then we rectify the representation with
a χ-structured metric learning objective.

In this supplementary material, we present more related
work of learning a debiased model from what bias infor-
mation is provided in advance in Section 1. Further, we
describe more implementation details in Section 2, such as
the visualization of Figure 2, matching factors A1 and A2

of Equation 3, and the Biased NICO dataset construction of
subsection 4.1 in the main paper. We also show additional
experimental observations and results in Section 3, including
error intervals, robustness analysis, etc.

1. Related Work

There are various methods of learning a debiased model
from what bias information is provided in advance.

Debiasing under the guidance of bias supervision. This
thread of methods introduces full explicit bias attribute su-
pervision and an additional branch of the model to predict
the label of the bias. Kim et al. [16] leverage bias clues to
minimize the mutual information between the representa-
tion and the bias attributes with gradient reversal layers [7].
Similarly, Li & Vasconcelos [22] perform RGB vector as
color side information to conduct the minimax bias miti-
gation. [5, 31] utilize the auxiliary bias instruction to train
the relevant independent models and ensemble their predic-
tions. [9,27] balance the performance of bias subgroups over
distribution shift. [4, 28] directly regularize the bias attribute
to disentangle the confused bias representations.

Debiasing with bias prior knowledge. Many real-world
applications limit access to sufficient bias supervision. How-
ever, a relaxed condition could be met to provide prior knowl-
edge of the bias (e.g., bias type). Many methods highlight
that the content bias type plays an important role in CNN ob-
ject recognition [8, 12, 23]. Based on such observations, sev-
eral approaches adopt the bias type to build a bias-capturing
module. Wang et al. [30] remove texture bias through latent
space projection with gray-level co-occurrence matrix [19].
Bahng et al. [2] encourage the debiased model to learn inde-
pendent representation from a designed biased one. Other
approaches mitigate the dataset bias existing in natural lan-
guage processing with logits re-weighting [1, 3].

Debiasing through general intrinsic bias properties.
Towards more practical applications, this line of methods
takes full advantage of the bias property, which does not
require either explicit bias supervision or pre-defined bias
prior knowledge. Nam et al. [25] make a comprehensive
analysis on the properties of bias. The observations indicate
a two-branch training strategy — a biased model trained
with Generalized Cross-Entropy loss [33] amplifying its
“prejudice” on BA samples, and a debiased model focuses
more on samples that go against the prejudice of the biased



one. Similarly, Lee et al. [20] fit one of the encoders to the
bias attribute and randomly swap the latent features to work
as augmented BC samples. Other approaches also consider
the model learning shortcuts revealed by the high gradients
of latent vectors [6, 14, 17, 18, 24, 35].

In the first stage, we consider the similarity of a sam-
ple to the BC one to assist in debiasing. It is agreement in
querying high quality data for training. Some methods in
Active Learning establish on the notions of uncertainty in
classification. They try to find the hard samples heuristically
such as selecting by the highest entropy [15] or the lowest
confidence [21]. Similarity, the mislabeled sample identifi-
cation [26] can be modified to mine the special BC samples.
Further, some of debiasing methods can be abstracted to the
first stage, e.g., matching the loss in the work of Nam et
al. [25] and mining with peer-picking of Zhao et al. [34].

2. Implementation Details
2.1. How to capture and visualize the training dy-

namic of Figure 2 in the main paper

To visualize the 2D attribute boundary, we first add an ex-
tra linear projection layer wproj ∈ Rd×2 behind the feature
extraction network and correspondingly modify the top-layer
classifier wc to classify on 2D features. After training is com-
pleted, we directly present the 2D features of the data and
the top-layer classifier in the Figure 2 of the main paper. Sec-
ondly, to compare different attributes and feedback on their
gradients fairly, we jointly train the attribute classifier with a
shared feature extraction network. This ensures their features
are consistent and comparable to the classifiers with different
attributes. Figure 2 shows the results of the above model
trained on Colored MNIST with a bias aligned (BA) ratio
of 0.95, where the learning rate is 0.00001. The two digit
(shape) classes in the figure are 2 and 8. Correspondingly,
the two color classes are purple and green. The samples 2 in
purple and the 8 in green are BA samples. In contrast, the
samples 2 in green and the 8 in purple are bias conflicting
(BC) samples.

2.2. Dataset construction

Colored MNIST. Following most of the previous
work [13, 20, 25], we construct the Colored MNIST by col-
oring each digit and keeping the background black, in other
words, every target attribute digit in the Colored MNIST is
highly correlated with a specific bias attribute color. The
degree of severity we chose to calibrate the dataset bias diffi-
culty was 1 as in previous works. The different bias-aligned
(BA) ratios contains different BA samples, e.g., in the ratio
of 99.9% we have 59940 BA samples and 60 bias-conflicting
(BC) samples in the training set. Similarly, the ratio of 99.5%
has {59940, 60} BA and BC samples, correspondingly. In
the same way, for other ratios of BA and BC samples, the

ratio of 99.0% is {58, 402; 598} and the ratio of 95.0% is
{57, 000; 3000}.

Corrupted CIFAR-10. For the Corrupted CIFAR dataset,
we follow the earlier work [20] and choose 10 corruption
types, i.e., {Snow, Frost, Fog, Brightness, Contrast, Spatter,
Elastic, JPEG, Pixelate, Saturate}. The corruption type
is highly correlated with the target ones as PLANE, CAR,
BIRD, CAT, DEER, DOG, FROG, HORSE, SHIP, and TRUCK.
Similarly, we choose severity 1 in the main paper [25]. The
number of BA samples and BC samples for each ratio of
BA ones are: 99.9%-{49, 950; 50}, 99.5%-{49, 750; 250},
99.0%-{49, 500; 500}, 95.0%-{47500; 2, 500}.

Biased CelebA. Following the experimental configura-
tion of previous works, We intentionally truncated a portion
of the CelebA dataset so that each target attribute contain-
ing BlondHair or not was skewed towards the bias attribute
of Male. The number of target bias, i.e., BlondHair-Male
is as follows: BC samples like BlondHair equals 0 with
Male equals 0 contains 1, 558 and {1 -1 : 1, 098}. The BA
samples is {1 -0 : 18, 279} and {0 -1 : 53, 577}.

Biased NICO. The Biased NICO dataset is dedicatedly
sampled in NICO [11], which is originally designed for Non-
I.I.D. or OOD (Out-of-Distribution) image classification.
NICO is enriched with variations in the object and context
dimensions. Concretely, there are two superclasses: Animal
and Vehicle: with 10 classes as BEAR, BIRD, CAT, COW,
DOG, ELEPHANT, HORSE, MONKEY, RAT and SHEEP for
Animal, and 9 classes as AIRPLANE, BICYCLE, BOAT, BUS,
CAR, HELICOPTER, MOTORCYCLE, TRAIN and TRUCK for
Vehicle. Each object class has 9 or 10 contexts. We select
the bias attribute with the highest co-occurrence frequency
with the target one, i.e., DOG on snow, BIRD on grass,
CAT eating, BOAT on beach, BEAR in forest, HELICOPTER
in sunset, BUS in city, COW lying, ELEPHANT in river,
MOTORCYCLE in street, MONKEY in water, TRUCK on
road, RAT at home, BICYCLE with people, AIRPLANE aside
mountain, SHEEP walking, HORSE running, CAR on track,
TRAIN at station. The quantitative details of each class are
shown in Table 1. Similarly, The details divided by bias
attribute are shown in Table 2, The remaining bias attributes
that do not appear in the BA samples are: {at wharf, at
airport, aside traffic light, eating grass, white, in cage, in
hole, in garage, cross bridge, at park, yacht, flying, aside
tree, black, standing, sitting, at night, double decker, on sea,
around cloud, with pilot, in sunrise, in hand, on booth, aside
people, at sunset, brown, on shoulder, spotted, subway, in
race, climbing, cross tunnel, velodrome, on bridge, shared,
at yard, in circus, on ground, on tree, at heliport, taking
off, on branch, wooden, sailboat, in zoo}, which are few in
number, about 4 of each. In the test set they are balanced
with the remaining bias attributes. The training set’s total
correlation ratio is roughly 86.27%.



Table 1. The number of each class in the Biased NICO training set and the bias aligned (BA) samples. We take the most occurring bias
attribute in each class as the attribute of the BA samples. The correlation ratio over all classes is roughly controlled to 86.27%.

Animal Size BA Ratio (%) Vehicle Size BA Ratio (%)

BEAR 274 247 90.15 AIRPLANE 102 75 73.53
BIRD 272 245 90.07 BICYCLE 203 176 86.70
CAT 310 283 91.29 BOAT 195 168 86.15
COW 190 163 85.79 BUS 225 201 89.33
DOG 274 247 90.15 CAR 116 89 76.72
ELEPHANT 203 176 86.70 HELICOPTER 190 163 85.79
HORSE 172 145 84.30 MOTORCYCLE 202 175 86.63
MONKEY 143 116 81.12 TRAIN 182 158 86.81
RAT 154 127 82.47 TRUCK 177 150 84.75
SHEEP 108 81 75.00

Table 2. The number of each bias attribute in the Biased NICO
training set and the bias aligned (BA) samples. These bias attributes
are the most frequent in each class. In addition, a few other bias
attributes appear in rare numbers, but are balanced with remaining
ones in the test set.

Bias Attribute Size BA Ratio (%)

on snow 292 247 84.59
on grass 284 245 86.27
eating 304 283 93.09
on beach 198 168 84.85
in forest 274 247 90.15
in sunset 181 163 90.06
in city 219 201 91.78
lying 181 163 90.06
in river 188 176 93.62
in street 190 175 92.11
in water 134 116 86.57
on road 162 150 92.59
at home 139 127 91.37
with people 191 176 92.15
aside mountain 84 75 89.29
walking 87 81 93.10
running 151 145 96.03
on track 92 89 96.74
at station 161 158 98.14

2.3. Pre-processing

The image sizes of Colored MNIST and Corrupted
CIFAR-10 are 28× 28 and 32× 32, respectively. We feed
the original images into the model and do not use data aug-
mentation transformations during training and testing. We
directly normalize the data from Colored MNIST and Cor-
rupted CIFAR-10 by the mean and standard deviation of both
(0.5, 0.5, 0.5). In the real-world datasets like Biased CelebA,
we first resize the images to a size of 224 × 224, and then
apply the RandomHorizontalFlip transformation. As
for the Biased NICO dataset, following most of the previous

Table 3. Convolutional neural network for Colored MNIST dataset.
The kernel is written in the form of H × W × C. BN indicates
whether the batch normalization layer is applied.

‘

Layer Kernel Padding BN Activation

Conv 7× 7× 16 3
√

ReLU
Conv 7× 7× 32 3

√
ReLU

Conv 7× 7× 64 3
√

ReLU
Conv 7× 7× 128 3

√
ReLU

AvgPool 1× 1 – – –
Norm – – – –

works [32], we append the RandomHorizontalFlip,
ColorJitter, RandomGrayscale transformations af-
ter the RandomResizedCrop to 224 × 224. For
both of them, during the test, we only resize the im-
ages. We normalize these real-world datasets by the
mean of (0.485, 0.456, 0.406) and the standard deviation
of (0.229, 0.224, 0.225).

2.4. Training details

Our code is based on the PyTorch library. Following
the previous work [13], We use the four-layer convolutional
neural network with kernel size 7×7 for the Colored MNIST
dataset and ResNet-18 [10] for Corrupted CIFAR-10, Biased
CelebA, Biased NICO datasets. For all methods and datasets,
we do not consider loading any additional pretrained weights
to allow the models represent the pure debiasing capability.
In the training phase, we use Adam optimizer and cosine
annealing learning rate scheduler. For all datasets, the batch
size is selected from {64, 128, 256}. Correspondingly, the
learning rate is from {0.0001, 0.0005, 0.001, 0.005}, and the
smaller ones are used for training the vanilla model. For
all methods, including the reproduced comparison ones, we
train the model for 200 epochs on Colored MNIST, Cor-
rupted CIFAR-10, while training 50 and 100 epochs on Bi-
ased CelebA and Biased NICO, respectively.



Table 4. Ablation study of χ-structured metric learning objective. We removed different branches of the task and reported unbiased accuracy
of the Colored MNIST dataset with varying ratios of BA samples. The BC ratio γ is relatively high.

Dataset Colored MNIST
Ratio (%) 99.9 99.5 99.0 95.0

χ2-model 66.91 88.73 92.15 97.87
−LCE (pγ , B1−γ ) 61.99 85.84 90.23 97.94
−LCE (p1−γ , Bγ ) 57.26 86.59 92.14 97.33

Table 5. The classification performance with 95% confidence interval error bars on unbiased test set (in %; higher is better) evaluated on
unbiased test sets of Colored MNIST with respect to the random seed after running experiments multiple times. We denote bias pre-provided
type by # as those without any information. The best result is in bold, while the second-best is with underlines.

Dataset Colored MNIST
Ratio (%) 99.9 99.5 99.0 95.0

Vanilla # 28.94±1.33 58.75±0.64 71.66±2.24 88.91±1.72

LfF # 32.98±2.20 69.44±3.15 85.78±7.32 95.79±0.99

χ2-model # 68.04±1.22 90.37±1.33 93.21±0.91 98.30±0.35

2.4.1 χ-shape matching pattern

• As stated in the paper, we design two exponential χ-
shape functions in Equation 4 to capture the ideal train-
ing dynamics of BC or BA samples for the first stage.
Considering the model predictions throughout the train-
ing process, we take the forgetting statistics [29] per
sample to adapt the matching factor A1 and A2 in the
Equation 3 of the main paper. We compute the number
of incorrect-to-correct or correct-to-incorrect predic-
tions for every sample, denoted as prediction fluctua-
tions as above. A higher prediction fluctuation leads to
a higher factor for more likely χ-shape matching and
vice versa. The maximum value of the factor primarily
influences the exponential function. In the paper, we
adopt A1 equals 0.1 and A2 equals 1.2. We analyze
the relevant ablation studies in Figure 6(c), Table 6 and
Table 7.

We train the 1000 epochs vanilla model with a learn-
ing rate 1e-5 on Colored MNIST, 5e-3 on Corrupted
CIFAR-10, 5e-5 on Biased CelebA and 1e-3 on Biased
NICO to extract the training dynamics. In practice, we
design the Area Under Score (AUS) strategy to capture
the training dynamics. All comparison methods lever-
age epoch-specific scores, and AUS applies to these
methods, e.g., Loss is the calculated all the epoch-level
loss summations. We generally use the ratio of divided
BC samples as a hyperparameter. We find that a slightly
larger BC ratio brings better results in our experiments,
as detailed in Table 4.

In addition, for the IASs importance verification ex-
periments in Table 1 of the main paper, the “step-wise”
setting indicates we apply uniformly higher and lower

sampling weights to BC and BA samples. As described
in the paper, the unified weights are related to the BA
ratio ρ in the whole dataset, i.e., the weight on BC
samples is ρ and on the BA ones is 1− ρ.

2.4.2 χ-structured metric learning

• In the second stage, we construct the data pools D∥ and
D⊥ with the ranking. The BC identification threshold
to split those two data pools can be adjusted to a suit-
able value without knowing the ground-truth dataset
BC ratio. To observe the IASs validity and unify
the style, we report the results one level higher in
{0.999, 0.995, 0.99, 0.95} than the dataset BC ratio in
the main text, i.e., the threshold is 0.99 if the dataset
BC ratio is 0.995. See more details in subsection 3.4
and Table 10.

We then construct different ratios of bias bags {Bγ ,
B1−γ } and mixed prototypes {pγ , p1−γ } by boot-
strapped sampling a batch containing almost the same
number of BA and BC samples using the first stage
χ-pattern score (described in subsection 3.3 in the main
paper). The more numerous part is the one that contains
all the samples in that part of the batch, e.g., for a large
γ with a majority of the BC part, Bγ contains all the BC
samples in the above batch. In this case, the remaining
1−γ ratio of BA samples are sampled uniformly in the
batch. The mixed prototype pγ and p1−γ are extracted
and constructed similarly. The mixed ratios γ are from
{0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}.

As shown in the paper, the computation of LCE (pγ ,
B1−γ ) and LCE (p1−γ , Bγ ) will yield different ratios
of mixed prototypes interacting with BA or BC samples.



Table 6. Ablation studies on the influence of different matching factor A1 (as in Equation 4 in the main paper) and A2 (fixed at 1.2) to the
top-ranking mean accuracy (in %) on 99.5% BA ratio Colored MNIST dataset.

Dataset Colored MNIST

Factor A1 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8
χ-shape performance 93.78 94.10 94.43 94.43 94.73 95.03 95.06 95.06

Factor A1 0.7 0.6 0.5 0.4 0.3 0.2 0.1
χ-shape performance 95.43 95.43 95.8 95.84 96.18 95.84 95.84

Average from 1.5 to 0.1 95.13±0.35

Table 7. Ablation studies on the influence of A1 (fixed at 0.1) and different matching factor A2 (as in Equation 4 in the main paper) to the
top-ranking mean accuracy (in %) on 99.5% BA ratio Colored MNIST dataset.

Dataset Colored MNIST

Factor A2 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8
χ-shape performance 95.84 95.84 96.18 95.84 95.84 95.58 95.58 95.55

Factor A2 0.7 0.6 0.5 0.4 0.3 0.2 0.1
χ-shape performance 95.25 94.95 94.99 94.69 94.69 94.69 94.39

Average from 1.5 to 0.1 95.33±0.27

In this process, we set the temperature τ in the metric-
based prediction of mixed prototypes pγ or p1−γ as
Equation 7 of the paper from {0.01, 0.05, 0.1}. Our
model’s average training time with NVIDIA RTX 3090
GPU is about 1.8x faster than that of LfF [25].

3. Additional Experiments
3.1. Results with error bars

We run our methods and the comparison methods like
vanilla method and Learning from Failure (LfF) [25] multi-
ple times and report error bars. We present the full results
with both 95% confidence interval as Table 5 and the stan-
dard deviation in Figure 3.

3.2. More observations and results in the first stage

In the main text, we have shown the change of posterior
over the GT-class and the bias one in Figure 4 of the main
paper with four typical samples of BC samples, interme-
diate attribute samples, and BA samples. Here we show
more observations on the whole training set in a statistical
significance.

• As shown in Figure 1, the vertical axis of the left two
columns figures is the quantity and the horizontal axis
is the epoch of model training. Each point on the curve
represents how many samples are predicted as GT-class,
Bias class or Others by the current epoch model. The
first column figures represent the prediction on BA sam-
ples, while the second column represents the prediction
on BC ones. It can be found that for BC samples,

even at the dataset level, the vanilla model always pre-
dicts them as Bias class first. It is consistent with our
observation in the main paper, in fact, this is another
interpretation of the right half of Figure 4 in the paper.

• The right two columns of Figure 1 also represent more
statistical information at the dataset level, e.g., the third
column shows the χ-shaped prediction of BC samples
over the whole dataset as training epoch increases. This
corresponds to the left half of Figure 4 in the paper. The
last column figures shows the change of the loss. It can
be found that the loss on the BC sample corresponds to
the lower branch of the χ-shaped curve in the paper.

Further, we show more BA sample identification results of
the first stage over various ratios. In Table 9, we display
their top-ratio accuracy, e.g., taking the top ranking with
the number of BC samples in the full training set to calcu-
late how many ground truth BC samples they contain. In
addition, we also present the average precision in Table 8.
Moreover, we plot the PR curves of various methods in the
first stage on Colored MNIST and Biased NICO datasets
in Figure 2. The results show that our method maintains
excellent performance.

3.3. Ablation study of χ-structured metric learning

In order to verify whether the effectiveness of our method
is indeed derived from our χ-structured metric learning ob-
jective. We first remove one of the mixed prototypes and bias
bag losses as “−LCE (pγ , B1−γ )” in Table 4. This substan-
tially lose the metric-based push relationship between the BA



Table 8. The average precision (AP) of BC samples identification on the Colored MNIST and NICO dataset. We display top-BC-ratio
accuracy, e.g., calculating the proportion of the mined top-ranked samples in the total BC ones.

Dataset Colored MNIST NICO
Ratio (%) 99.9 99.5 99.0 95.0 86.27

Entropy [15] 96.49 83.52 77.61 64.94 30.83
Confidence [21] 96.68 85.61 80.73 69.76 31.00
Loss [25] 98.06 98.22 97.03 91.55 39.64
Pleiss et al. [26] 97.97 89.24 79.15 55.48 30.48
Zhao et al. [34] 98.03 96.04 93.27 81.29 34.27
χ-pattern 98.07 98.44 97.77 95.96 37.79

Table 9. The mean accuracy of BC samples identification on the Colored MNIST and NICO dataset. It is similar to the above marked table.

Dataset Colored MNIST NICO
Ratio (%) 99.9 99.5 99.0 95.0 86.27

Entropy [15] 91.66 78.33 72.57 63.43 34.31
Confidence [21] 91.66 80.33 76.25 68.90 34.91
Loss [25] 95.00 94.00 92.80 87.43 41.81
Pleiss et al. [26] 95.00 82.67 72.24 53.70 33.53
Zhao et al. [34] 95.00 90.33 88.12 79.66 39.84
χ-pattern (Ours) 96.66 95.67 95.48 94.30 40.00

Table 10. The unbiased test set accuracy to verify the robustness of the χ2-model with varying BC identification thresholds on Colored
MNIST. The vertical and horizontal axes indicate the ground-truth ratio of BA samples and the ratio of BA ones fed to the χ2-model’s
sampling process, respectively.

Ratio (%) 99.9 99.5 99.0 95.0

99.9 57.82 66.91 67.30 69.16
99.5 82.42 87.02 88.73 90.58
99.0 86.28 89.65 91.39 92.15
95.0 96.49 97.77 97.68 97.87

samples and the high BC ratio prototypes pγ . Next, we also
drop another branch of the prototypes training, i.e., attenuate
the effect of most BC samples on a low ratio of mixed pro-
totypes p1−γ . This reduces the debiasing capability using
the general properties of the Figure 5 in the main paper. The
results show that our method with χ-structured objective is
significantly better than the single branch at 99.9%, 99.5%
and 99.0%. It achieves the same superior level at 95.0%.
Especially in the extreme environment, i.e., when the BC
samples are rare, the χ-structured can further improve the
model performance and overcome the debiasing problem
comprehensively.

3.4. Robustness of the χ2-model with varying iden-
tification thresholds of BC sample

For χ2-model, we use the BC identification thresholds to
split D∥ and D⊥. We show the influence of different thresh-
olds in the Table 10, where the vertical axis represents the
ground-truth ratio of BA samples included in the dataset.

The horizontal axis represents the ratio of BA samples used
as hyperparameters in the χ-model. From this result, we can
find that the model is less affected by the thresholds. Further-
more, since the Bias Bag {Bγ , B1−γ } is constructed taking
into account the presence of IASs. Based on bootstrapped
sampling, the BC identification threshold learning is already
embedded in the first stage χ-pattern scores.

4. Overall Algorithm

In Algorithm 1, we show the pseudo-code of this work.

5. Discussion About the Limitations

In this paper, we adopt a new two-stage χ2-model. How-
ever, the first stage still requires training the long-epoch
vanilla model as a weaker bias-capture mechanism. When
two attributes have an equal learning difficulty and jointly
determine the target label, our approach may emphasize the
weaker one, but retain the effects of the stronger one.



Algorithm 1 Training for χ2-model

Require: Biased training data Dtrain = {(xi, yi)}Ni=1.
1: First stage: χ-shape pattern.
2: Train a vanilla model θ on Dtrain with cross entropy loss as mentioned in Equation 1 in the main paper:
3:

LCE = E(xi,yi)∼Dtrain [− log Pr (hθ(xi) = yi | xi)] .

4: Consider the T epochs change on ground-truth label yi and bias label bi (xi, hθ):
5:

LCE (xi) =

(
Lgt

CE (xi) =
{
− log Prt (yi | xi)

}T
t=1

Lb
CE (xi) =

{
− log Prt (bi (xi, hθ) | xi)

}T
t=1

)
.

6: Capture the BC sample with two exponential χ-shape functions:
7:

χshape =

(
pgt =

{
e−At

}T
t=1

pb =
{
eAt
}T
t=1

)
.

8: Compute the ranking score s(xi) with the inner product over two curves as Equation 4 in the paper:
9:

s(xi) = ⟨LCE (xi) , χshape⟩ = ⟨Lgt
CE (xi) , p

gt⟩+ ⟨Lb
CE (xi) ,p

b⟩

=

T∑
t=1

−(e−At) log Pr (hθ (xi) = yi | xi)− (eAt) log Pr (hθ (xi) = bi (xi, hθt) | xi) .

10: Second stage: χ-structured metric learning objective.
11: for each step do
12: Construct multiple bias bags Bγ with bootstrapping as Equation 5 in the paper:
13:

Bγ =
{
(xi, yi)

∣∣ NUM(D⊥) : NUM
(
D∥
)
= γ

}
,

14: where the ratio of BC samples is γ.
15: Build the prototype p for class c based on Bγ as Equation 6 in the paper:
16:

pγ,c =
1

K

∑
(xi,yi)∈Bγ

fϕ (xi) · I [yi = c] .

17: Consider a high γ:
18: for all samples xi ∈ B1−γ do
19: Classify with pγ as Equation 7 in the paper:
20:

Pr (yi | xi) =
exp (−d (fϕ (xi) ,pγ,yi) /τ)∑

c∈[C] exp (−d (fϕ (xi) ,pγ,c) /τ)
.

21: Compute LCE (pγ , B1−γ ).
22: end for
23: for all samples xi ∈ Bγ do
24: Classify with p1−γ as mentioned before.
25: Compute LCE (p1−γ , Bγ ).
26: end for
27: Compute ∇ϕ LCE (pγ , B1−γ ) + LCE (p1−γ , Bγ ).
28: Update ϕ with ∇ϕ.
29: end for
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Figure 1. The more observation in the first χ-pattern stage on Colored MNIST. In these figures the general bias properties is represented

over the whole dataset from a statistical perspective. The figures in the left two columns indicate that as the training epoch increases, the

model prediction quantity of the BC samples and BA samples on the GT-class, Bias class or Others changes. The third column figures

represent training dynamics of the predicted probability on BC and BA samples in different classes. The last column figures denote change

of the loss BC and BA samples during training.

99.9% of C-MNIST 99.5% of C-MNIST 99.0% of C-MNIST 95.0% of C-MNIST

Figure 2. The Precision-Recall curves of the BC samples identification on Colored MNIST dataset (as above C-MNIST) over various ratios.

Best view in colors.



Figure 3. The classification performance with error bars on unbiased Colored MNIST test set. Error bars expressed by the black line denote

the standard deviation. Best view in colors.
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(i) Colored MNIST (ii) Corrupted CIFAR-10

Figure 4. Example samples of Colored MNIST and Corrupted CIFAR-10 datasets.
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(iii) Biased CelebA (iv) Biased NICO

Figure 5. Example samples of Biased CelebA and Biased NICO datasets.
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