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Figure 1. Analysis on the uncertainty and appearance consistency
loss. Red box signs the target image of the collection.

1. More Implementation Details
Here we provide more details of the implementation. For

the EG3D model, we use the one pretrained on FFHQ [3]
dataset with the volume-rendering size of 128 × 128. For
the deformation network Φj

∆ on j-th stage, we use a 3-layer
MLP to extend the representation of expression coefficient
βi from 64 to 256, then concatenate it with h̄j . The concate-
nated representation is then fed into another 3-layer MLP to
generate the deformation code ∆sji ∈ R512. To evaluate the
point-to-plane distance between the predicted geometry and
ground truth, we first manually select 7 different facial key
point on both meshes, and perform rigid align using ICP
method. Then the metric can be calculated.

2. More Ablation Study
Here we provide more ablation study on the components

of the proposed method. First, we compare our full method
with the one using average pooling instead of uncertainty to
perform style code fusion, and illustrate the results in Fig. 1.
We observe that without uncertainty modeling, the average-

Photo Collection Ours Only multi-image warm-up

Figure 2. Analysis on the NPF fitting setting.

pooling model cannot well represent the identity feature of
the target image after NPF fitting, providing improper fa-
cial shapes and appearance. Besides, the expressions can-
not be suitably predicted, either. In contrast, our method
well models the facial geometry and corresponding expres-
sions. Note that, the facial shape is actually a blended shape
with identity and expression. As a result, leveraging uncer-
tainty adaptively digs more suitable ID consistency to boost
the deformation modeling.

Then, we also perform analysis on the appearance con-
sistency loss Lac in Fig. 1. We observe that using Lac, the
appearance details such as the hair, eye shadow and lipstick
keep consistent to the target. On the contrary, discarding
Lac loses such features during rotation. Further, we also
perform comparison between our full method and that only
using multi-image warm-up during NPF fitting, and illus-
trate the results in Fig. 2. We observe that only using multi-
image warm-up loses specific details, appearance and shad-
ows. The reason behind is that these scene-specific features
are not commonly shared within the photo collection, and
multi-image warm-up urges the model to learn a mean con-
dition. In contrast, our full method utilizes target-image fit-
ting after the warm-up procedure, thus the specific lighting
conditions, make-ups and other details can be recovered.

Finally, we use different approaches to get the style code
si, and illustrate their effects in Table 1. We leverage two
widely-used methods PSP [4] and E4E [6] to predict the
style code from each image. We observe that using the di-
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No. method p2p (mm) ↓ MAD (deg.) ↓ IDE ↓
(1) Ours 1.77 11.87 0.257
(2) Ours-PSP [4] 1.80 11.89 0.260
(3) Ours-E4E [6] 1.82 11.86 0.263

Table 1. Comparison with different style code optimization
method. Similar performance is obtained.

No. method p2p (mm) ↓ MAD (deg.) ↓ IDE ↓
(1) Ours 1.77 11.87 0.257
(2) relaxed-6 1.83 12.21 0.296
(3) relaxed-4 1.90 12.35 0.303
(4) relaxed-2 2.57 12.50 0.389
(5) single-image PTI [5] 2.35 12.10 0.482

Table 2. Analysis on the relaxed photo collection.

rect scheme [3] to optimize the style code obtains similar
accuracy to that of PSP and E4E. Such a phenomenon re-
veals that our method is robust and insensitive.

3. Limitation
Multi-image input: Here we discuss the limitation of

our method. As introduced in the Sec. 5 of main article,
our method requires multiple images of a same identity as
input. Although the in-the-wild image collections are easy
to get, such a setting may limit the application in some ex-
treme conditions. Here we provide a possible solution by
building a ‘relaxed’ photo collection which is composed of
images with similar facial shapes. We first predict identity
coefficient for each image using the pretrained 3D face net-
work [1], then select 5 nearest faces by calculating the co-
efficient difference between the target image and selected
one. Combined with the original target image, we treat
the 6 photos as a relaxed collection and use our proposed
method to recover the target face. The results are shown
in Table 2, where the flag ‘-n’ means the relaxed collection
contains n images. We observe that with 6 images, the re-
laxed collection gets only slightly weaker performance than
our standard setting and still outperforms the single-image
baseline. This reveals that even images with similar facial
shapes still provide reliable priors to complement for the
monocular ambiguity. The performance decreases with 4
images. When the collection has only two images, the per-
formance suffers from the ambiguity and shape conflict be-
tween the original image and the selected one. Note that,
even the nearest facial image has the lowest coefficient dif-
ference, it may not be the nearest one in physical world due
to the inaccuracy of the 3D face network. In summary, with
a suitable size of relaxed photo collection, our method still
provides more accurate reconstruction performance than the
single-image baseline.

Unusual conditions: Another limitation is the degrada-
tion on processing unusual expressions, lighting and arti-
facts. As illustrated in Fig. 3, we observe that our method
suffers from extreme challenging conditions that hardly ap-
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Figure 3. Limitations of our method.

pear in the dataset, especially when a facial image contains
several challenging factors. The reason behind is multi-
aspect. On the one hand, recovering challenging expression
is actually an opening problem in 3D face reconstruction,
even the state-of-the-art model [1] cannot well handle it. As
a result, our method is influenced by the degradation from
3D face model. On the other hand, the pretrained EG3D
model also limits the performance. Although trained on
FFHQ dataset that has various portrait images, the model
still has difficulty recovering the artifacts, expressions and
lighting appearance that have no common features within
the dataset. One possible solution is to implement more
targeted data to boost the EG3D model’s learning. Us-
ing GAN-based image generation to synthesize images with
various expressions as training samples is also a possible so-
lution. For the harsh lighting conditions, the model could be
constrained by using a lighting prior as input. In summary,
our method still outperforms the EG3D + PTI [5] baseline
under unusual conditions, and produces clearer and more
reasonable face reconstructions.

4. More Results

Here we also provide more qualitative results of our
method. As illustrated in Fig. 4, our method significantly
outperforms EG3D + PTI baseline and HeadNeRF [2] on
the extreme conditions of poses, artifacts, lighting and ap-
pearance, obtaining much more robust performance. Fur-
ther, in Fig. 5 we observe that our method provides reliable
reconstruction on both geometry and texture.
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Figure 5. More reconstruction results of our method.
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