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The supplementary material contains: (1) more details
about the evaluation setups on the VG150 dataset in our ex-
periments; (2) more evaluation results.

A. Evaluation Setups

As mentioned in the main paper [8] (Section 4.2 – Eval-
uation protocols and metrics), we compute all recall metrics
over test images of the VG150 dataset. However, consider-
ing that the adopted GLIP pre-trained visual-semantic space
(VSS) has seen part of images in the original VG150 test
split (∼26k) during pre-training [1], we exclude these over-
lapped images and achieve a new split of ∼15k test images.
Our approach adopts the same VG150 train split and com-
putes evaluation metrics over the new test split.

Since the new test split is a subset of the original test
split, one concern is whether or not the performances over
these two test splits would exhibit significant variations. In
an effort to delve into this concern, we compare the perfor-
mances of several classic SGG methods on the original and
the new test split. These methods are IMP [5], VTransE [7],
VCTREE [4] and MOTIFS [6], with stable implementations
in codebase [2]. Table 1 summarizes the results. We ob-
serve that the computed recalls show only < 0.15% vari-
ations (relatively < 0.8%) between the two different test
splits. Such results basically validate that the new VG150
test split can lead to stable recall metrics with mostly same
performance trends as in the original split. The performance
variations between these two test splits are trivial in com-
parison with the performance differences between differ-
ent SGG methods. For example, in Table 1, our VS3

(Swin-L)

achieves > 2.65% performance boosts than the mentioned
baselines. Accordingly, we directly compare the perfor-
mances obtained on the new VG150 test split by our method
against the performances reported in previous works on the
original VG150 test split.
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Methods Original test split (∼26k) New test split (∼15k) Difference Relative
IMP [5] 18.59 / 26.36 / 31.62 18.45 / 26.35 / 31.57 -0.14 / -0.01 / -0.05 0.75%
VTransE [7] 23.06 / 29.99 / 34.69 23.06 / 29.91 / 34.59 -0.00 / -0.08 / -0.10 0.29%
VCTREE [4] 24.51 / 31.29 / 35.98 24.45 / 31.19 / 35.87 -0.06 / -0.10 / -0.11 0.32%
MOTIFS [6] 25.29 / 32.30 / 37.08 25.16 / 32.21 / 36.94 -0.13 / -0.09 / -0.14 0.51%
VS3

(Swin-T) - 26.10 / 34.53 / 39.18 - -
VS3

(Swin-L) - 27.81 / 36.63 / 41.50 - -

Table 1. Performance comparisons in the evaluation metrics
(R@20/50/100) between the original VG150 test split and the new
test split (removing invalid images that have already been seen dur-
ing GLIP [1] pre-training). We observe the evaluation differences
between these two splits (< 0.15% variations) are somewhat triv-
ial in comparison with the performance differences between differ-
ent SGG methods (e.g., VTransE improves over IMP by > 3%).
Difference = New test split metrics - Original test split metrics;
Relative = max(|Difference| / Original test split metrics).

SGG model Detector Backbone mR@20 mR@50 mR@100
IMP [5] Faster-RCNN RX-101 2.8 4.2 5.3
VTransE [7] Faster-RCNN RX-101 3.7 5.0 6.0
VCTREE [4] Faster-RCNN RX-101 4.2 5.7 6.9
MOTIFS [6] Faster-RCNN RX-101 4.1 5.5 6.8
VS3 - Swin-T 4.3 6.6 8.1

Table 2. Experimental results of fully supervised SGG. All metrics
are computed under the SGDET protocol on VG150 test images.
Results of previous models come from Tang et al. [3].

B. More Evaluation Results

We report additional results on the unbiased metric un-
der the same fully supervised SGG in Table 2. Concretely,
the adopted unbiased metric is mean Recall@K (mR@K),
which averages Recall@K across all predicate categories.
The results show that the pre-trained VSS does not mitigate
the bias issue very significantly, since the bias issue is nat-
urally rooted in the pre-training image-text corpus. Note
that we can easily apply debias techniques (e.g., reweight,
TDE [3]) in our VS3 framework to further mitigate the bias
issue.
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