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Supplementary Material

Summary
This supplementary material is organized as follows:

• Section 1 introduces the implementation of our archi-
tecture and training details.

• Section 2 discusses more ablation studies of our de-
signs.

• Section 3 shows more comparisons with previous
works.

• Section 4 discusses the limitation of the proposed
method.

1. Implementation Details
Dataset. Following previous work [4], we train our warping
and refinement networks on cropped VoxCeleb2 dataset [3],
which consists of 145k videos from 6k different identities.
We preprocess the videos by cropping the faces with bound-
ing boxes containing the landmarks from the first frame and
resize each video sequence to 256×256 resolution. We ran-
domly select 500 videos from the VoxCeleb2 for evaluation.
We use the source and driving frames from the same iden-
tity for training and same-identity reenactment evaluation,
where the driving frames is also the ground truth image. For
cross-identity reenactment evaluation, we randomly shuffle
the identity in the previous test set, where the source and
driving frames have different identities.
Training details. We train the 256×256 base model on the
VoxCeleb2 dataset with batch size of 48 using Adam opti-
mizer of learning rate 2×10−4 on 8×Tesla V100 GPUs. We
set hyperparameters of losses as: λr = 10, λid = 20, λeye =
50, λmouth = 50 and λadv = 1. We first train the warping
network for 200,000 iterations, then the warping and refine-
ment network jointly for 200,000 more iterations.

We further conduct our meta-learning stage for N =
14, 000 outer iterations and meta-learning rate β = 2 ×
10−5. In each iteration, we train an inner loop for K = 24
iteration with inner loop learning rate α = 2 × 10−4 on 48
images per identity.

We train our temporal super-resolution module on the
HDTF dataset for 20,000 iterations with batch size 8 and
video sequence length 7 using Adam optimizer of learning
rate 1× 10−4.
Metrics. Following previous works [8, 9], we evaluate our
temporal consistency using warping error Ewarp . For each
frame Ot, we calculate the warping error with previous
frame Ot−1 as:
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where Mt is the occlusion map [11] for a pair of images
yt and yt−1, N is the number of pixels, and W is back-
ward warping operation with optical flow [14]. The aver-
ages warping error Ewarp

(
{t}Tt=1

)
is used to evaluate our

temporal consistency.
Approach to perform Cross ID reenactment. We can
reconstruct an accurate 3D face by fitting a morphable
face model [2] based on the dense facial landmarks [17],
which well disentangles identity with expression and mo-
tion. Benefiting from this, when performing challenging
cross-identity reenactment, we simply combine the identity
coefficients from the source 3D face with expression and
head motion coefficients from the driving face and obtain a
new 3D face. Then we project the resultant 3D face to 2D
landmarks to serve as the driving target. In this way, there is
no leakage of the driving identity so that the source identity
could be well preserved.
Detailed architecture. The detailed architecture of our
warping and refinement network is shown in Figure 1 and
Figure 2. “3× 3-Conv-k-1” indicates a convolutional layer
with kernel size of 3, channel dimensions of k and stride
of 1. “LReLU, ReLU” indicates LeakyReLU [19] and
ReLU [1] activation function respectively. Figure 3 illus-
trates the architecture of our temporal super-resolution net-
work, where “Conv3d-k-1” represents a 3D convolution
over temporal and spatial dimensions with k feature dimen-
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Figure 1. Detailed architecture of our warping network.
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Figure 2. Detailed architecture of our refinement network.

sions and stride of 1.

2. Additional Ablation

2.1. Visualization of ID, Landmark Ablation

Figure 4 illustrates the warped images using the flow
field produced by the warping network to evaluate the ef-
fectiveness of our dense landmark. The results guided by
our dense landmarks are more accurate without obvious ar-
tifacts. In Figure 5, we show the visual changes brought by
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Figure 3. Detailed architecture of our temporal super-resolution
network.
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Figure 4. Qualitative comparison of warping quality of sparse
landmarks and dense landmark encoding.

our ID-preserving refinement. Our source identity is better
preserved, especially in the area of eye makeup and dimple.

2.2. Ablation of Temporal Super-resolution

In Figure 6, we select a column of the generated frame
and visualize its temporal change. The bicubic-upsampled
video lack texture of hair. The naive 2D face restoration
baseline [16] generates more flickering artifacts. Our results
have clear and stable temporal motion, which is close to
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Figure 5. Qualitative comparison of identity-preserving architec-
ture.
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Figure 6. Comparison of temporal profile. We select a column and
observe its changes with time index. The result of our temporal
super-resolution is more stable and consistent without flickering
noise.

ground truth. In Table 1, we provide an additional compari-
son with StyleHEAT [20] at 512× 512 resolution and eval-
uate baselines using FVD [15], which is a popular metrics
in video generation. Our method achieves the lowest FVD,
which demonstrates our high temporal fidelity. Since Style-
HEAT generates unrealistic over-smooth and flickering im-
ages, its FID, LPIPS, and FVD are much worse than ours.
Note that L1 loss Ewarp is biased towards over-smoothed re-
sults. Thus, the Ewarp of StyleHEAT and bicubic upsampled
video can be lower than ours.

3. Additional Comparison Results

Methods FID↓ LPIPS↓ FVD↓ Ewarp ↓

Ground Truth - - - 0.0182

StyleHEAT [20] 44.5207 0.2840 572.363 0.0207

Base w/ bicubic 25.5762 0.2285 248.413 0.0184
Base w/ GFPGAN [16] 22.6351 0.2178 172.754 0.0242
Ours 21.4974 0.2079 162.685 0.0213

Table 1. Quantitative evaluation of our temporal super-resolution
on self-reconstruction at 512× 512 resolution.

Methods Quality↓ Identity↓ Motion↓

FOMM [12] 3.48 3.25 2.99
PIRender [10] 3.12 2.92 3.28
DaGAN [5] 3.48 3.55 3.01
DAM [13] 3.65 3.58 3.02
ROME [7] 2.77 2.87 3.14
StyleHEAT [20] 2.99 3.26 3.71
Ours 1.51 1.57 1.84

Table 2. Average ranking score of user study. User prefer ours the
best in both three aspects.

3.1. Additional Qualitative Comparison with Re-
cent Methods on a Larger Scale Test Set

Main results. We perform our evaluation including re-
cent methods [5, 7, 13] on a larger test set, which contains
20 test videos from HDTF [21] and VFHQ [18] following
the setting of StyleHEAT [20]. For the same-id case, we
evaluate using 500 frames of each video with 10k frames in
total, while for the cross-id case, we use 1000 source images
from CelebA-HQ [6] as source images and use 100 frames
of each video to drive 50 source images with 100k frames
in total. The results are shown in Table 3, in which our
method achieves the best scores in almost all the metrics.
Moreover, the FVD score of our full model improves sig-
nificantly compared with the base model, which illustrates
the effectiveness of the proposed temporal super-resolution
network. Note that the compared methods target the one-
shot setting and inevitably exhibit artifacts. In contrast, we
are the first to study a personalized model which is of prac-
tical significance, and the proposed fast personalization is
orthogonal to prior techniques and can be generally applied.

Number of parameters and runtime (FPS). We also
provide the comparison of the model size and throughput
between our model and other methods in Table 3.

User study. We also conduct a user study to obtain
the user’s subject evaluation of different approaches. We
present all the results produced by each comparing method
to the participants and ask them to rank the score from 1 to
7 (1 is the best, 7 is the worst) on three perspectives inde-
pendently: the image quality, the identity preservation and
the motion drivability. 20 subjects are asked to rank differ-
ent methods with 15 sets of comparisons in each study. The



Methods Params (M) FPS Same-ID 2562 Cross-ID 2562

FID↓ FVD↓ LPIPS↓ ID Loss↓ FID↓ ID Loss↓

FOMM [12] 59.80 51.57 22.7112 136.4454 0.1577 0.0848 37.4306 0.4368
PIRender [10] 22.52 9.72 28.2376 367.3942 0.1881 0.1200 40.4600 0.3600
DaGAN [5] 60.36 29.04 21.0879 108.5139 0.1427 0.0912 34.1784 0.4640
DAM [13] 59.75 43.74 23.7192 140.8459 0.1363 0.0832 40.4675 0.4400
ROME [7] 123.85 2.63 119.9319 1204.52 0.5422 0.3376 102.9575 0.5360
Ours 130.28 16.78 18.1581 219.6183 0.1335 0.0496 25.1646 0.1920

Methods Params (M) FPS Same-ID 5122 Cross-ID 5122

StyleHEAT [20] 367.70 0.03 41.3364 244.6287 0.2957 0.2560 136.3959 0.4960
Ours 284.97 1.22 21.1314 131.8511 0.2150 0.0880 127.3204 0.2544

Table 3. Evaluation against more baselines on a larger scale test set
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Figure 7. Failure case of our framework.

average ranking is shown in Table 2. Our method earns user
preferences the best in both three aspects.

3.2. Additional Qualitative Comparison

We also provide additional videos on the webpage to
evaluate our results qualitatively. “Ours-Base” in the video
denotes our base model in Sec 3.1, while “Ours-Full”
denotes our full model with temporal-consistent super-
resolution network. Our model is able to provide state-
of-the-art generation quality with high temporal fidelity
on both self-reconstruction and cross-reenactment tasks.
Moreover, the videos of fast personalization illustrate the
strong adaptation capability of our meta-learned model.
The in-the-wild examples also demonstrate the generalized
ability of the proposed model.

4. Limitation
Our one-shot model may not handle occlusions well. As

shown in Figure 7, the occluded text in the background ap-
pears blurry in the output result. One possible solution is to
inpaint the background from pretrained matting and com-
bined it with the generation results using alpha-blending
following [4], which we leave for future work.

https://meta-portrait.github.io/
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