
Supplementary Material: Modeling Video as Stochastic Processes for
Fine-Grained Video Representation Learning

Heng Zhang1,2* Daqing Liu3* Qi Zheng4 Bing Su1,2†
1 Gaoling School of Articial Intelligence, Renmin University of China

2Beijing Key Laboratory of Big Data Management and Analysis Methods
3 JD Explore Academy, JD.com 4 The University of Sydney

zhangheng@ruc.edu.cn, {liudq.ustc, subingats}@gmail.com, qi.zheng@sydney.edu.au

In this supplementary material, we rst provide the pre-
liminaries in Appendix A. Then, we give more quantitative
results in Appendix B. Next, we present more qualitative
results on the video alignment and ne-grained frame re-
trieval in Appendix C. Last, we discuss the hyperparame-
ters setting in the practice and elaborate more details of the
proposed method with an algorithm in Appendix D.

A. Preliminaries
Brownian motion. Brownian motion is also called the
Wiener process, and the stochastic process X(t) : t ≥ 0
is called Brownian motion. The standard Brownian motion
satises the following conditions:

X(0) = 0

X(t) : t ≥ 0 is independent increment

X(t)−X(s) ∼ N(0,σ2(t− s))

(1)

where σ = 1 in the standard Brownian motion. Although
the Brownian motion in VSP is not a standard one where the
mean value is variable and σ =

√
α(T − t), it can be con-

verted to standard Brownian motion by standardized trans-
formation. The standard Brownian motion B(t) : t ≥ 0
has the following important properties:

B(t+ τ)−B(τ) : t ≥ 0, τ > 0

1
c
B(c2t) : t ≥ 0, c ̸= 0

(2)

The rst equation is the Markov property while the second
one is the self-similarity of standard Brownian motion.

Brownian bridge. Given a standard Brownian motion
Bt : t ≥ 0, let Xt = Bt − tB1, the probability distri-
bution is Xt ∼ N(0, t(1− t)) then Xt : 0 ≤ t ≤ 1 is the

*Equal contributions.
†Corresponding author.

Brownian Bridge process, which is a conditional stochastic
process Bt : 0 ≤ t ≤ 1B1 = 0. It is proved as follows:

P (Bt ≤ xB1 = 0) =P (tB̂1/t ≤ xB̂1 = 0)

P (t(B̂1/t − B̂1) ≤ x)
(3)

where t(B̂1/t − B̂1) ∼ N(0, t(1− t)). So we get:

Xt
d
= t(B̂1/t − B̂1)

(BtB1 = 0)
(4)

Thus Brownian bridge is a conditional stochastic process.

B. More Quantitative Results
B.1. Ablation Studies

Distance Measurement. We replace the distance measure-
ment of in PCL with L1. Table 2 shows that using L2 as
the distance measurement in PCL is more effective, and
achieves better performances on various metrics.

B.2. Verication in IKEA ASM

The statistical results on representations learned by our
VSP in IKEA are reported in Figure 1. The same conclusion
can be drawn that it conforms to a Gaussian distribution as
described in the Equation (1).

(a) Distance statistic (b) Distribution on a point
Figure 1. Statistical results on the whole validation set of IKEA.

Method AP@5 AP@10 AP@15
Pe

nn
A
ct
io
n

SaL 76.04 75.77 75.61
TCN 77.84 77.51 77.28
TCC 76.74 76.27 75.88
LAV 79.13 78.98 78.90
CARL 92.28 92.10 91.82
VSP 92.56 92.31 92.04
VSP-P 93.45 93.13 93.02

Po
ur
in
g

SaL 84.05 83.77 83.79
TCN 83.56 83.31 83.01
TCC 87.16 86.68 86.54
LAV 89.13 89.13 89.22
VSP 91.85 91.70 91.52
VSP-P 93.18 93.01 92.96

IK
E
A
A
SM

SaL 15.15 14.90 14.72
TCN 19.15 19.19 19.33
TCC 19.80 19.64 19.68
LAV 23.89 23.65 23.56
VSP 26.54 26.39 26.36
VSP-P 28.48 28.27 28.22

Table 1. Fine-grained frame retrieval results. Best and second best
results are highlighted.

Distance Classication AP@5 Progress τ

L1 92.73 91.69 0.887 0.925
L2 93.12 92.56 0.923 0.986

Table 2. Ablation studies of process distance measurement in PCL
on PennAction.

B.3. Fine-Grained Frame Retrieval

This downstream task evaluates the consistency of the
learned representations by the nearest neighbors. Speci-
cally, in the validation set, we alternately take each video
as a query and the others as the gallery. In each query
video, we retrieve K most similar frames from the gallery
for each query frame, then we get the retrieval precision for
each query frame by calculating the proportion of frames
belonging to the same subaction as the query frame in the
K retrieved frames. At last, we report the average retrieval
precision on the validation set. The quantitative results on
the three datasets are shown in Table 1. We nd that VSP
surpasses prior methods. And training with the prompt of
phase labels improves the overall performance of the three
datasets.

Figure 2. Visualization of video alignment on multiple-view of
pouring. The two-row pictures are the temporally corresponding
frames of the view pair. The slope of lines between the two time-
lines indicates the timestamp distance of the aligned frame pair,
e.g., the vertical line means their timestamp distance is 0.

Figure 3. Visualization of ne-grained frame retrieval. The left-
most column is the query and the right 5 columns are the Top-5 re-
trieved frames. The query action of the rst row is Baseball Pitch.
The rest of the three queries come from three different phases of
Clean and jerk.

C. More Qualitative Results

C.1. Video Alignment

We evaluate our VSP on another downstream task, video
alignment. Video alignment aims to nd the temporal cor-
respondence between two videos of the same action. In our
experiments, we randomly select video pairs from Pouring
that provide multiple-view of the same action and object.
Then we extract their frame-wise representations with our
framework and calculate their cosine similarities, which we
use to nd the temporal correspondence via the dynamic
time warping (DTW) algorithm [1, 2]. A visualized result
from the Pouring test set is shown in Figure 2. We can nd
that corresponding frames have the similar semantic, i.e.,
the same action phase, which suggests that our method can
grab motion dynamics to align videos temporally.

C.2. Fine-grained Frame Retrieval

We show the visualization of ne-grained frame retrieval
on PennAction [3]. We rst extract the representations of
each video in the validation set. Then we randomly select
one video for query and the other videos as the gallery. For
each query frame of the query video, we retrieve itsK near-
est neighbors in the embedding space from the gallery. Fig-
ure 3 shows examples of Top-5 retrieval results. Most of the
retrieved frames belong to the same subaction as the query
frame. The semantics of motion is more important than
backgrounds or camera views, which illustrates our method
is sensitive to motion dynamics.

D. Method Algorithm
Brownian bridge length η and overlap ratio δ. As the
Brownian bridge represents a subaction, an intuitive way to
get rid of η is using the average length (denote as l) of the
subaction in the target dataset. Overlap ratio δ should simul-
taneously maintain continuity and discrimination of consec-
utive subactions. 10%-30% is a safe range according to the
experiments.
Pseudo-code. To further elaborate our method, we present
the pseudo-code in the Algorithm 1 in Pytorch style. We
list the variables used in the algorithm at the top. Cor-
responding to Section 3, we rst encode the given frame
triples into embeddings. Then we show the algorithm for
Brownian bridge construction under various annotation sit-
uations. At last, we detail the process contrastive training,
which contains three parts: a) bridge distance, b) process-
based contrastive loss, and c) supervised contrastive loss.
Based on the algorithm, we can nd that our method are
model-agnostic and simple yet efcient.

References
[1] Rémi Lajugie, Damien Garreau, Francis R. Bach, and Sylvain

Arlot. Metric learning for temporal sequence alignment. In
NeurIPS, 2014. 2

[2] Hiroaki Sakoe and Seibi Chiba. Dynamic programming algo-
rithm optimization for spoken word recognition. IEEE Trans-
actions on Acoustics, Speech, and Signal Processing, 26:159–
165, 1978. 2

[3] Weiyu Zhang, Menglong Zhu, and Konstantinos G. Derpanis.
From actemes to action: A strongly-supervised representation
for detailed action understanding. ICCV, 2013. 3

Algorithm 1 Pytorch-style pseudo-code of Video as Stochastic Process (VSP) Framework

[Parameters] f_theta: encoder network
[Arguments] N: batch size, T: video length, D: embedding size, eta: bridge length, delta: overlap ratio
[Inputs] batch: a batch with N videos

#============================
Section 3.1: Video Encoding
#============================
VSP is model-agnostic
Z = f_theta(batch) # NxTxD

#=================================
Section 3.2: Bridge Construction
#=================================
for i in range(N):

if annotation_type == ’raw_videos’:
if no phase annotation available, random sample clips according to eta, delta
clips = range(start=1, stop=T, step=eta, overlap=delta)
sample_clip = clips.random()

else:
else random sample phases
sample_clip = phase_annotation.random()

X_1[i],X_T[i] = sample_clip[0], sample_clip[-1] # X indicates timestamps
X_t[i] = random(x_1[i], X_T[i]) # sample internal frame timestamp

retrieve embedding features
Z_1[i], Z_t[i], Z_T[i] = Z[i, X_1[i]], Z[i, X_t[i]], Z[i, X_t[i]] # NxD

#==
Section 3.3: Process Contrastive Training
#==
a) bridge distance, i.e., Eqn.(2)
def distance(z_1, z_t, z_T, x_1, x_t, x_T):

sigma = (x_t-x_1) * (x_T-x_t) / (x_T-x_1) # x_t-x_1=t,x_T-x_1=T
zt_ = z_1 * (x_T-x_t)/(x_T-x_1) + z_T * (x_t-x_1)/(x_T-x_1)
distance = -1/(2*sigma.pow(2)) * euclidean_dist(zt,zt_).pow(2)
return distance

b) process-based contrastive loss, i.e., Eqn.(3)
def pcl(pos_dis, neg_dis):

ps = torch.exp(pos_dis)
ns = sum(torch.exp(neg_dis))
loss = -torch.log(ps/(ps+ns))
return loss

c) supervised contrastive loss, i.e., Eqn.(4)
def scl(target, positives, negatives):

ps = sum(torch.exp(dot(target, positives)/tao))
ns = sum(torch.exp(dot(target, negatives)/tao))
loss = -torch.log(ps/(ps+ns))
return loss

loop for all videos
for i in range(batch):

pos_dis[i] = distance(Z_1[i], Z_t[i], Z_T[i], X_1[i], X_t[i], X_T[i])

negative samples are all sampled timestamps except for positive, i.e., each positive has (N-1)*3 negative
batch_X = X_1.pop(i)+X_t.pop(i)+X_T.pop(i) # i.e., \mathcal{B}
neg_dis[i] = [distance(Z_1[i], Z_t[neg_x], Z_T[i], X_1[i], X_t[neg_x], x_T[i]) for neg_x in batch_X]

process-based contrastive loss
loss += pcl(pos_dis[i], neg_dis[i])

if we have frame-level annotations, we can further distinguish pos/neg timestamps as supervisions
if annotation_type == ’frame_labels’:

pos_batch_X = [x for x in batch_X if frame_annotation[x] == frame_annotation[X_t[i]]] # i.e., \mathcal{P}
neg_batch_X = batch_X - pos_batch_X # i.e., \mathcal{N}

supervised contrastive loss
loss += scl(Z_t[i], pos_batch_X, neg_batch_X)

optimization step
loss.backward()
optimizer.step()

