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A. More Details
A.1. Model Architecture

For all nerflet MLPs f;, we follow the NeRF architec-
ture [6] but reduce the number of hidden layers from 8 to
4, and reduce the number of hidden dimensions from 256
to 32. We also removed the shortcut connection in the orig-
inal network. All other architecture details are as in [0].
The background neural field uses NeRF++ [9] style encod-
ing, and its MLP f, has 6 hidden layers and 128 hidden
dimensions. We perform coarse-to-fine sampling as in [6],
but both coarse and fine samples are drawn from the same
MLP, not two distinct ones.

A.2. Hyper-parameters

We use N = 512 nerflets for all experiments in the main
paper. The scaling parameter 7 is set to 5 for all experi-
ments. We initialize the temperature parameter 7 to 1 and
multiply 7 by 0.9 after each epoch. The smooth decay factor
eis setto 10~ for all experiments. We draw 64 samples for
the coarse level and 128 samples for the fine level within the
bounding box. For unbounded scenes, we draw 16 coarse
samples and 16 fine samples from the background MLP. We
increase the weight for L, from 0.0 to a maximum of 1.0,
increasing the value by 0.2 after each of the first five epochs
to prevent early overfitting to high-frequency information.
Contrastive ray pairs are sampled within a 32 x 32 pixel
window. The weight for the regularization loss L is set
to 0.1. All other losses (Lsem; Linss Ldensity s Lradiis L1 5 Loox)
have a weight factor 1.0.

A.3. Dataset Details

For training on each ScanNet scene, we uniformly sam-
ple 20% of the RGB frames for training and 10% of the
RGB frames for evaluation— about 200 frames for train-
ing and 100 frames for evaluation. For both ScanNet and
KITTI-360 scenes, we estimate the scene bounding box
from the camera matrices and near-far values of the scene.
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Specifically, for each scene, we shoot rays from the cam-
eras and calculate the minimum bounding box which could
cover all near-far ray segments. Then we rescale the coordi-
nate inputs within the box to [—0.5, 0.5] for all experiments.

One important note about the ScanNet [2] experiments
is that 2D ScanNet supervision indirectly comes from 3D.
That is because the 2D ScanNet dataset was made by ren-
dering the labeled mesh into images. We do not use this 2D
ground truth directly, but PSPNet [10] is trained on it. Here,
this is primarily a limitation of the evaluation rather than the
method- there are many 2D models that can predict reason-
able semantics and instances on ScanNet images, but we
want to be able to evaluate against the exact classes present
in the 3D ground truth. This does not affect the comparison
to other 2D supervised methods, as all receive their supervi-
sion from the same 2D model. By comparison, KITTI-360
results are purely 2D only, but all quantitative evaluations
must be done in image space.

A 4. Paper Visualization Details

For ScanNet mesh extraction, we create point samples on
a grid and evaluate their density, semantic and instance in-
formation from nerflets. We then estimate point normals us-
ing the 5 nearest neighbors and create a mesh with screened
Poisson surface reconstruction [4]. The mesh triangles are
colored according to the semantic and instance labels of
their vertices. For the teaser and KITTI-360 visualizations
of our learned nerflets representation, we visualize nerflets
according to their influence functions. We draw ellipsoids
at influence value e~ 2 ~ 0.607.

A.5. Interactive Visualizer Details

Our interactive visualizer allows real-time previewing of
nerflet editing results while adjusting the bounding boxes
of objects in the scene. The visualizer draws the following
components. First, a volume-rendered RGB or depth image
at an interactive resolution of up to 320x240. This enables
viewing the changes being made to the scene in real-time.



Second, the nerflets directly, by rendering an ellipsoid per
nerflet at a configurable influence threshold. This enables
seeing the scene decomposition produced by the nerflets.
Third, a dynamic isosurface mesh extracted via marching
cubes that updates as the scene is edited, giving some sense
of where the nerflets are in relation to the content of the
scene. Fourth, a set of bounding box manipulators, one per
object instance, with draggable translation and rotation han-
dles. These boxes are instantiated by taking the bounding
box of the ellipsoid outline meshes for all nerflets associ-
ated with a single instance ID. A transformation matrix that
varies per instance is stored and pushed to the nerflets on
each edit.

Most of the editor is implemented in OpenGL, with the
volume rendering implemented as a sequence of CUDA ker-
nels that execute asynchronously and are transferred to the
preview window when ready. In Table 3, we report perfor-
mance numbers for top-1 evaluation, which is often the right
compromise for maximizing perceived quality in a given
budget (e.g., pixel count can be more important), though
interactive framerates with top-16 or top-3 evaluation are
possible at somewhat lower resolutions.

A.6. Instance Label Assignment

To assign instance labels for each nerflet, we render
the nerflet influence map W; for each view and compare
with corresponding 2D semantic and instance segmentation
maps to match each [ (2D object instance or stuff with lo-
cal id j in view i) to a set of nerflets M (7). Here M(-)
maps an instance ID to its set of associated nerflets. We
then create a set of 3D instances G = {gi} according to
the segmentation result of the first view — we create a 3D
global instance for each detected 2D object instance. For
each new view 7, we match lf to the 3D instance gj if
IM(17) N M(gy)|/|M(1)] > 6, and then update M (gy)
to M(gy) U M(I}). If no match is found in {g; }, we cre-
ate a new 3D instance and insert it into (G. An illustration
of this step could be seen in Fig. 1. Before inserting any
new global instance g, we remove all nerflets that are al-
ready covered by the global set G from g. By using this
first-come-first-serve greedy strategy we always guarantee
no nerflet is associated with 2 different global instances.
After this step, each nerflet is associated with a global in-
stance ID, and our representation can be used to reason at
an instance level effectively.

B. More Results

The following experiments are done on the subset of
ScanNet from [1].

View 1

View 2

2D Instance
Segmentation
Prediction

Nerflets Associated Merged
with the 2D Instance Global Instance

Figure 1. Illustration of instance label assignment. Instance pre-
dictions from all views are matched and merged iteratively into
global instances.

PSNR mIOU
n =64 26.34 53.23
n =128 2834 6241
n = 256 28.81  69.97
n =512 29.12  73.63
n=1024 29.19 74.09

Table 1. Ablation experiment on ScanNet for different numbers of
nerflets.

B.1. Number of Nerflets

We perform an ablation study on the number of nerflets
on ScanNet. The results are in Tab. 1. We find that increas-
ing the number of nerflets monotonically improves both the
photometric and semantic metrics. However, the improve-
ment above 512 nerflets is marginal, at least on this dataset.
To balance performance and efficiency, we use 512 nerflets.

B.2. Trade-off between the Number of Nerflets and
the MLP Size

Here we present an experiment investigating the trade-
off between the number of nerflets vs. the size of the MLPs
while keeping the number of the parameters comparable.
As shown in Table 2, our setting (512x15k) achieves a bal-
ance between network capacity and decomposition granu-
larity. The performance gain is marginal if we further in-
crease the number of nerflets used or MLP size, and when
using 2048 nerflets, we see a performance drop in PSNR
possibly due to the limited representation power of each
nerflet.

B.3. Effect of Top-+ Evaluation

We perform an ablation study on the quality impact of
k when we only evaluate the nerflets within the highest &
influence weights for each point sample. The results are in
Tab. 3. We find that evaluating 32 versus 16 nerflets has
little influence on the model performance since each nerflet



64 128 256 512 | 1024 | 2048
3k 23.89 | 26.23 | 27.91 | 28.08 | 28.49 | 28.99
7k 26.86 | 27.93 | 28.02 | 28.59 | 29.15 -
15k | 27.98 | 28.09 | 28.43 | 29.12 | 29.18 -
32k | 28.12 | 28.34 | 28.89 | 29.15 - -
65k | 28.39 | 28.56 | 29.01 - - -
132k | 28.49 | 28.71 - - - -

Table 2. Performance comparison of different design choices
(number of nerflets and MLP sizes). “-” indicates failed runs due
to OOM or divergent optimization. Our setting (512 x 15k, marked
in red) achieves a balance between model performance and size.

PSNR mIOU
k=32 29.13 73.72
k=16 29.12 73.63
k=3 29.05 7295
k=1 28.35 70.73

Table 3. Ablation experiment on ScanNet for evaluating only ner-
flets with top-k influence weights during training and testing.

only contributes locally. From 16 to 3, there is little change
in PSNR but some change in mloU. We see moderate per-
formance drops in both metrics when only evaluating one
nerflet with the highest influence weight. We use k& = 16
for all experiments in the paper, though it is possible some
intermediate value provides an even better balance.

B.4. Inactive Nerflets

One known problem [3] with training using RBFs that
have learned extent is that when an RBF gets too small or
too far from the scene, it does not contribute to the con-
struction results. The radii loss L,q4;; and box 1oss Ly are
proposed to alleviate this issue. To estimate the actual num-
ber of inactive nerflets, we utilize the nerflet influence map
W and count nerflets that do not appear on any of these
maps in any view. In KITTI-360 experiments, we estimate
to have 10.6 inactive nerflets on average per scene, making
up ~ 2.07% of all available nerflets. In ScanNet experi-
ments in the main paper, we estimate to have 30.6 inactive
nerflets on average per scene, making up ~ 5.98% of all
available nerflets.

B.5. ScanNet 2D Segmentations

In Figure 2, we visualize more examples on ScanNet
comparing our panoptic predictions with reference annota-
tions from the dataset. It can be seen that our representation
learned from 2D supervision contains rich information and
can produce more accurate segmentation results than ref-
erence maps in some cases. Our method produces clearer
boundaries, fewer holes, and discovers missing objects in
the reference results thanks to its ability to fuse segmenta-
tion maps from multiple views with a 3D sparsity prior to

Figure 2. Comparison of ScanNet reference panoptic segmenta-
tion maps and our panoptic segmentation predictions overlaid on
reference images.

Method Appearance Semantics Mem Footprint
PSNR mlOU MB
SemanticNeRF [11] 21.09 72.89 5.8
Instant-NGP [7] 21.34 74.22 25.2
Ours 21.68 74.87 1.2

Table 4. Results on novel view color and semantic synthesis tasks
on KITTI-360 [5] (our train-validation split). Nerflets achieve bet-
ter quality while having much smaller memory footprint than both
SemanticNeRF and Instant-NGP.

the structure of the representation.

B.6. More Baselines on KITTI-360

In order to evaluate more baselines, we create our own
training and validation splits on the provided training data
of KITTI-360. We evaluate Nerflets, Instant-NGP, and Se-
manticNeRF on these splits. The results are reported in
Tab. 4.

The results show that Nerflets outperform SemanticN-
eRF and Instant-NGP in both RGB and semantic quality.
Also, both methods consume more memory and do not pro-
duce panoptic segmentation maps.

B.7. Initialize from 3D Geometry

Our method can benefit from additional 3D inputs. For
example, given a point cloud of the scene, we can initialize
the nerflets around object surfaces. To validate the effect
of using additional 3D inputs we perform experiments on 8
ToyBox-5 scenes [8], where 3D ground truth is available.
For each scene, we sample 512 points on the ground-truth
geometry with Poisson disk sampling and initialize the cen-
ters of the nerflets on these points.

According to the results on ToyBox-5 scenes (Fig. 3, we
can achieve the same performance on a scene (PSNR =~
27.23) in ~10k steps when initializing with a point cloud
versus ~25k steps when initializing randomly. However,
the converged final performance is similar.
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Figure 3. Validation PSNR of models trained with vs. without 3D
initialization. The final converged performance is similar, but the
model learns much faster with proper geometry initialization.

B.8. Performance Variance

To evaluate the performance variance of our model, we
fit each scene in our train split of KITTT-360 five times, and
evaluate the performance on our validation split, and report
the variability. On our KITTI-360 test split, the mean PSNR
is 21.67 and the mean stddev on PSNR is 0.062. The mean
mlIOU is 75.03 and the mean stddev is 0.221. The results
show small variance of our performance and indicate our
optimization is stable across different runs.
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