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Abstract

In this supplementary document, we show more sample
frames and distribution of camera locations of Scenes100
to illustrate its diversity. We provide more implementa-
tion details and the running speed for the experiments
in the main paper. We also look into the quality of
the pseudo-labeling and model performance from the per-
spective of individual videos. Lastly we show the re-
sults of compound adaptation experiments. Please refer
to https://github.com/cvlab-stonybrook/scenes100 for the
dataset and code. It is recommended to read this document
on a color screen, and zoom in for fine details in the figures.

A. Sample Frames and Distribution of Camera
Locations of Scenes100

In Fig. A we present sample frames along with their non-
annotation masks and annotation bounding boxes from 12
videos in Scenes100 to show the diversity of the dataset.
Please refer to the sub-captions for our comments for each
of the scenes. The diversity of scenes shows the useful-
ness of the dataset. And since all videos share the same set
of hyper-parameters in the adaptation experiments, it reiter-
ates the effectiveness and robustness of the proposed self-
supervised scene adaptive object detection method.

The locations of the cameras of the videos in Scenes100
is shown on a world map in Fig. B. Unlike most other ob-
ject detection or scene understanding datasets, which are
captured in a smaller range of locations, the videos in
Scenes100 were recorded in places across the globe, giving
great diversity.

B. More Implementation Details
B.1. Software Libraries, Hyper-parameters, and

Training Details

We start the finetuning from the models provided
by the Detectron2 [5] model zoo. M1 and M2 are
based on the configurations “COCO-Detection/ faster rcnn
R 50 FPN 3x.yaml” and “COCO-Detection/ faster rcnn
R 101 FPN 3x.yaml”, respectively. We keep the weights of
the backbone and RPN, but re-initialize the weights of the
new ROI heads, as the number of classes changes during the
object categories remapping described in the main paper.
Then the whole network is trained end-to-end on remapped
MSCOCO training set. We use learning rate scheduling
with base of 5×10−4, image batch size of 4, and ROI batch
size of 128. The models are trained for 15,000 iterations.
We examine the models’ performance on validation set and
losses periodically during training to ensure convergence.

For self-supervised adaptation training, the training
video portions are down-sampled uniformly to 5 frames
per second, which gives 27,000 training frames per video.
All spatial resolutions of the frames are kept. For pseudo-
labeling, we set λdet = 0.5, λsot = 0.9, and λiou = 0.85.
For location-aware mixup, we set pmixup = 0.3, rmixup =
0.5, and αcover = 0.65. For dynamic background extrac-
tion we set Tbg = 90s. For fusion models training, we
use average pooling for feature pyramid fusion, and set
αmid = αlate = 0.5. In adaptation training, we use learn-
ing rate scheduling with base of 10−4, image batch size of
4, and ROI batch size of 128. The models are trained for
20,000 iterations. We examine the models’ performance on
validation set and losses periodically during training to en-
sure convergence.

B.2. Implementation Details of Compared Baselines

The official implementation1 of Self-Train (ST) [3] does
not include the code for detection, tracking, and hard nega-

1https://github.com/AruniRC/detectron-self-train



(a) Video 001 recorded in Jackson, Wyoming, USA at September 2020. The
field of view and occlusion are moderate. Image quality is very clear.

(b) Video 006 recorded in Tokyo, Japan at November 2021. The field of view
is very wide causing significant corner distortion.

(c) Video 016 recorded in Varna, Bulgaria at November 2021. The field of
view is extremely wide. The lighting is low.

(d) Video 019 recorded in New York City, USA at November 2021. The field
of view is extremely wide. Object are densely occluded.

(e) Video 040 recorded in Osaka, Japan at November 2021. It is a shadowed
walkway in business district with heavy object occlusion.

(f) Video 049 recorded in Tokyo, Japan at November 2021. The field of view
is extremely wide and the objects appear very small.

(g) Video 074 recorded in San Francisco, California, USA at November 2021.
There is very strong contrast between light and shadow.

(h) Video 090 recorded in Ust-Kut, Russia at December 2021. The weather
is snowy, leaving mostly white background.

(i) Video 114 recorded in Kennebunkport, Maine, USA at December 2021.
Most of the objects are in a strong back-light condition.

(j) Video 128 recorded in Katashina, Japan at December 2021. This is an
indoor scene with people occluded by desks and chairs.

(k) Video 141 recorded in St John, U.S. Virgin Islands at December 2021. It
is an indoor scene with heavy object occlusion.

(l) Video 172 recorded in Ammanford, Wales at December 2021. The lighting
is very low, and motion blur of the objects is strong.

Figure A. Sample frames from Scenes100 with their non-annotation masks and annotation bounding boxes. As described in the sub-
captions, the videos cover a variety of locations, weather, lighting conditions, image qualities, camera perspectives, and indoor/outdoor
environments. The diversity of our dataset makes it representative for various scenes and thus useful for the understudied scene adaptive
object detection task.



Figure B. The locations of the cameras in Scenes100 on the world
map. Antarctica and Arctic regions are not included. Each loca-
tion is represented by a blue pin. The number of pins is smaller
than 100, as some of the videos are captured in the same city.
Map is created using tools provided by Google Maps. Please see
https://support.google.com/maps/answer/3145721 for its conven-
tions on region names and borders.
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Figure C. Compare the number of object bounding boxes per im-
age of manual annotation and pseudo-labeling. Each scatter point
+ represents one video. The red line — indicates the least-square
linear model fit to the scatter. The Pearson correlation coefficient
is displayed.

tive mining, so we re-implemented it in our framework.
We take the code of the core algorithm from the official

implementation2 of STAC [4], which is the image augmen-
tation function set, and integrate it into our framework.

We directly use the official implementation3 of Adaptive
Teacher (AT) [2] and simply replace the initial base model
and data loader with ours.

We directly use the official implementation4 of H2FA R-
CNN [6], and simply replace the initial base model and data
loader with ours.

The official implementation5 of TIA [7] is based on an-

2https://github.com/google-research/ssl detection
3https://github.com/facebookresearch/adaptive teacher
4https://github.com/XuYunqiu/H2FA R-CNN
5https://github.com/MCG-NJU/TIA

other framework not compatible with our dataset and model
architecture. So we implement it following the core logic in
the official code base. We have to reduce the coefficient
of auxiliary consistency losses by a factor of 10 to avoid
training divergence. Number of training iterations is also
reduced to 250, for longer training schedule leads to strong
performance degradation.

The official implementation6 of LODS [1] is based on
another framework not compatible with our dataset and
model architecture. So we implement it following the core
logic in the official code base. Number of training iterations
is also reduced to 250 due to performance degradation.

B.3. Inference Speed of Different Fusion Models

We show the inference throughput of vanilla faster-
RCNN, early-fusion faster-RCNN, mid-fusion faster-
RCNN, and late-fusion faster-RCNN in Tab. A. All mod-
els use the same R-101 backbone, and are ran on the same
NVIDIA RTX 4090 GPU using the same set of images. The
dataloader is carefully optimized to eliminate any possible
CPU bottleneck. Please note that although mid-fusion and
late-fusion introduces significantly more parameters by du-
plicating the RPN and ROI networks, only the branch for
the fused feature pyramid will be deployed for inference.
Thus they do not enlarge the model compared to vanilla
faster-RCNN at inference time.

fusion model inference throughput (images/s)

vanilla model 17.78
early-fusion 17.33
mid-fusion 11.93
late-fusion 11.96

Table A. Inference throughput of different fusion models in term
of images per second. As stated in the main paper, early-fusion
adds very limited computational cost, while mid-fusion and late-
fusion impact the speed more significantly, but they give higher
precision.

B.4. Effect of Pseudo-Labeling Hyper-parameters

We try to exclude tracking pseudo bounding boxes from
training. We also test only using M2 to generate the de-
tection results. The results are shown in Tab. B. Including
tracking bounding boxes in pseudo-labeling provides con-
sistent performance gain. The results of only using M2 in
detection also show that ensemble of models is beneficial.

We change the hyper-parameters λdet and λiou for
pseudo-labeling, and see how they effect the performance
of the adapted models. To avoid interfering of other fac-
tors, location-aware mixup and object mask fusion are not

6https://github.com/Flashkong/Source-Free-Object-Detection-by-
Learning-to-Overlook-Domain-Style



detectors tracking APGm
co APG50

co APGm
w APG50

w

M1+M2 ✓ +0.95 +0.54 +1.67 +1.55
M1+M2 ✗ +0.73 +0.22 +1.49 +1.31

M2 ✓ +0.58 -0.30 +1.21 +0.67

Table B. Effects of tracking and ensemble of models on adaptation performance, in term of averaged AP gain. m and 50 stand for mean
over IoU thresholds and IoU = 50%, respectively. co and w stand for standard classes mean and proposed classes-weighted mean. ✓ and
✗ mean being and not being applied, respectively.

used. The results are shown in Tab. C. The results show
that increasing λdet to certain level can lead to increase of
APGm, but decrease of APG50. The performance will be
degraded if λdet is too high. Lower λiou leads to slightly
higher performance.

λdet λiou APGm
co APG50

co APGm
w APG50

w

0.5 0.85 +0.95 +0.54 +1.67 +1.55
0.7 0.85 +1.47 +0.43 +1.79 +0.78
0.9 0.85 +0.33 -3.02 -0.12 -4.09
0.5 0.75 +1.28 +0.60 +2.03 +1.75
0.5 0.95 +0.36 +0.50 +1.00 +1.51

Table C. Effects of pseudo-labeling hyper-parameters on adapta-
tion performance, in term of averaged AP gain. m and 50 stand
for mean over IoU thresholds and IoU = 50%, respectively.
co and w stand for standard classes mean and proposed classes-
weighted mean. λdet is the minimum score for a detected object
to be included in the pseudo bounding boxes. λiou is the IoU for
2 bounding boxes to be merged during refinement.

B.5. Effect of Mixup Hyper-parameters

We change the hyper-parameters pmixup, rmixup, and
αcover for our proposed location-aware object mixup, and
see how they effect the performance of the adapted models.
To avoid interfering of other factors, object mask fusion is
not used. The results are shown in Tab. D. It can be seen
that increasing pmixup or rmixup, meaning stronger mixup,
can improve the AP s slightly.

B.6. Discussion

Please note that the results shown in Tab. C and Tab. D
should not be viewed as a full-scale hyper-parameter tun-
ing. The hyper-parameters in pseudo-labeling and location-
aware mixup can interfere with each other. The situa-
tion is more complicated when object mask fusion is used.
A proper tuning will require a search in the full hyper-
parameter space, which is far beyond the computational ca-
pacity we have. It can also be reasonably expected that
each video in Scenes100 has it own set of optimal hyper-
parameters. Nevertheless, we argue that our proposed meth-
ods are mostly insensitive to the hyper-parameters, and can

still perform well even no video-specific tuning is applied.

C. Individual Video Based Analysis
In the main paper, all the results are given in the form

of the average over all the videos in Scenes100. However,
due to their diversity, it is natural that our proposed meth-
ods perform differently on different videos. Here we take a
deeper look into the individual performance of our methods.

C.1. Quantitative Assessment of Pseudo-Labeling

In Fig. C, we compare the number of manually labeled
object bounding boxes per image with the number of pseudo
bounding boxes after the proposed pseudo-labeling proce-
dure. The same set of hyper-parameters are used as in the
experiments. All the pseudo boxes with at least 1 corner in-
side the non-evaluation mask are removed for consistency.
Please note that the mask is not used in the adaptation train-
ing experiments. It is clear the number of bounding boxes
from pseudo-labeling is correlated with actual number of
bounding boxes from human annotation. Please note that
the comparison is not precise, since the frames used for
pseudo-labeling and human annotation come from differ-
ent parts of the videos, which means the density of objects
can change. When the object density is not very high (less
than 50 object per image), the correlation is strong, show-
ing the proposed pseudo-labeling can identify most of the
objects. However, when the object density is very high,
meaning that there is heavy occlusion or the field of view
is extremely wide, the scene becomes more difficult for ob-
ject detectors and the number of pseudo bounding boxes is
smaller compared to the actual number.

C.2. Correlation of AP Gains of Methods

We take a framework either from the baseline methods
or from our ablation study, pair it with our best proposed
method (pseudo-labeling + location-aware mixup + object
mask mid-fusion, indicated by PL+MX+MF). we plot the
individual AP gain after adaptation on each video of the
2 models in the pair as a scatter and calculate the Pearson
correlation coefficient. The results are shown in Fig. D.

It is clear that only ST and LODS, which give moderate
AP gain during adaptation, is weakly correlated with the



pmixup rmixup αcover APGm
co APG50

co APGm
w APG50

w

0.3 0.5 0.65 +1.72 +1.67 +2.25 +2.53
0.5 0.5 0.65 +1.77 +1.72 +2.41 +2.75
0.7 0.5 0.65 +2.06 +2.16 +2.47 +2.90
0.3 0.3 0.65 +1.67 +1.67 +2.15 +2.47
0.3 0.7 0.65 +1.60 +1.59 +2.20 +2.57
0.3 0.5 0.45 +1.81 +1.70 +2.29 +2.52
0.3 0.5 0.85 +1.73 +1.74 +2.23 +2.60

Table D. Effects of locate-aware mixup hyper-parameters on adaptation performance, in term of averaged AP gain. m and 50 stand for
mean over IoU thresholds and IoU = 50%, respectively. co and w stand for standard classes mean and proposed classes-weighted mean.
pmixup is the probability that a frame is selected for mixup. rmixup is the probability a pseudo bounding box in the mixup source frame is
copied and pasted. αcover is the threshold that a covered pseudo bounding box to be removed if exceeded.

proposed method. STAC, AT, H2FA, and TIA all are not
correlated with the proposed method. However, the com-
binations PL (pseudo-labeling), PL+MX (pseudo-labeling
+ location-aware mixup), PL+EF (pseudo-labeling + object
mask early-fusion), PL+MF (pseudo-labeling + object mask
mid-fusion), and PL+LF (pseudo-labeling + object mask
late-fusion) are all strongly correlated with the best method.
This indicates that our proposed methods are consistent in
scene adaptation performance. The scenes that all methods
perform poorly can be regarded as hard samples.

C.3. Success and Failure Cases Study

In Fig. E we present the videos that the best proposed
method performs extraordinary well or bad in term of
APGm

w , and discuss the possible causes. Since it is the AP
gains being examined, good performance means not only
that the adapted model achieves high precision, but also that
the base model cannot perform very well so there is room
for improvement. Bad performance means the adaptation
process actually degrade the detection ability of the base
model.

Please note that the case study is qualitative and empiri-
cal. In our future work we will carry more systematic anal-
ysis on the performance, and improve our methods based on
the observations.

D. Performance of Compound Models
Here we treat Scenes100 in a manner closer to the stan-

dard domain adaptive object detection problem. All 100
videos are regarded as a whole target domain, and the mod-
els are trained on all the training frames from them, result-
ing a generic (compound) model for all videos. For consis-
tency reasons, we keep all the hyper-parameters and settings
during training unchanged from the individual adaptation
settings used in the main paper, only to increase the number
of training iterations by 20× to incorporate larger training
set. After training, we still use the same independent eval-
uation protocol as in the main paper, and report the average

AP gains in Tab. E.
Interestingly, different methods performs very differ-

ently under this compound adaptation setting compared to
individual adaptation setting. ST is the only method the
performs noticeably better, implying that it benefits from
higher variance in the training data. AT and TIA perform
significantly worse. Our proposed method sees about 1-
point drop in the AP s, but is still the best one by a con-
siderable margin. This shows that the proposed method is
more suitable for a fine-grained scene adaptive learning set-
ting compared to more generic domain adaptive one. Trying
to explain the vast difference between methods under differ-
ent settings can be an interesting direction of research in our
future work.
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(a) ST [3] vs. best
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(b) STAC [4] vs. best
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(c) AT [2] vs. best
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(d) H2FA [6] vs. best
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(e) TIA [7] vs. best
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(f) LODS [1] vs. best
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5.0 2.5 0.0 2.5 5.0 7.5 10.0
APGm

w  of PL+MX

4

2

0

2

4

6

8

10

AP
G

m w
 o

f P
L+

M
X+

M
F

Pearson r = 0.8504

(h) PL+MX vs. best
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(i) PL+EF vs. best
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(j) PL+MF vs. best
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(k) PL+LF vs. best

Figure D. Compare the AP gains of different frameworks against the proposed best model. Each scatter point + represents one video. The
red lines — indicate the least-square linear models fit to the scatters. The Pearson correlation coefficients are displayed.

Method Individually-adapted (main paper) Compound adaptation

APGm
co APG50

co APGm
w APG50

w APGm
co APG50

co APGm
w APG50

w

ST [3] +0.80 +0.24 +1.39 +1.03 +1.69 +1.47 +1.69 +1.46
STAC [4] -1.26 -5.12 -1.97 -6.64 -1.03 -4.81 -1.56 -6.03
AT [2] -0.75 -1.11 +0.06 +0.04 -4.64 -6.92 -3.57 -5.50
H2FA [6] -3.10 -4.97 -3.77 -6.01 -3.78 -5.98 -3.99 -6.66
TIA [7] -0.32 -0.37 -0.32 -0.33 -1.82 -2.76 -1.58 -2.34
LODS [1] +0.45 +1.28 +1.02 +2.28 +0.59 +1.01 +0.69 +1.33

Proposed +3.76 +4.45 +3.78 +4.65 +2.77 +3.68 +2.56 +3.48

Table E. Averaged AP gain of different compound adaptation models. The numbers of AP gain under individual adaptation setting are
copied from the main paper for easy comparison. m and 50 stand for mean over IoU thresholds and IoU = 50%, respectively. co and w

stand for standard classes mean and proposed classes-weighted mean.
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(CVPR), 2022. 3, 6
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(a) Success case of video 154, adaptation increases APGm
w from 17.59 to 27.19. The base model misses some of the cars, probably due to the complexity

of the scene and varied light and shadow conditions. The pseudo-labeling can identify most of the target objects, and the adapted model is able to pick up
those cars missed by the base model.

(b) Success case of video 007, adaptation increases APGm
w from 25.13 to 33.36. Similar to video 154, the base model misses many of the smaller objects.

Although the pseudo-labeling cannot find all of objects, the adapted model still performs significantly better.

(c) Success case of video 014, adaptation increases APGm
w from 42.53 to 51.75. The base model cannot properly detect the vehicles in the shadow.

However, in the object mask they are more clearly outlined and can be identified by the adapted model.

(d) Failure case of video 051, adaptation decreases APGm
w from 32.84 to 30.96. Adaptation seems to make the model produce less bounding boxes at the

heavily-occluded regions (e.g. the parked cars at middle-right of the frame). This is probably due to the fact that pseudo-labeling cannot identify each object
accurately at those regions.

(e) Failure case of video 093, adaptation decreases APGm
w from 54.91 to 50.08. The base model already performs very well, likely because the background

is covered by snow and the objects are well-separated. Pseudo-labeling introduces some false positive bounding boxes, which is learned by the adapted
model. Tuning the pseudo-labeling hyper-parameters can probably fix this issue.

Figure E. Some success and failure cases of the best proposed method. For each case, from left to right, 5 images are presented: i) 1 sample
frame from the evaluation split with its non-annotation masks and annotation bounding boxes, ii) its corresponding object mask image, iii)
the detection output of the base model on the evaluation frame, iv) the detection output of the adapted model on the evaluation frame, and
v) 1 sample frame from the training split with its pseudo-bounding boxes from pseudo-labeling. For the detection output, we only show
object bounding boxes with confidence score higher than 0.5.
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