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A. Appendices
Following parts are introduced in this appendices: i) the

input streams for our network, i.e., radar signal process-
ing for multi-view range-angle-Doppler (RAD) tensors; ii)
more detailed descriptions about the proposed PCKOn-Net;
iii) detailed analysis and implementation of the proposed
annotation calibration pipeline for CARRADA-RAC; iv)
additional comparative analysis between existing convolu-
tions and our PeakConv.

A.1. Radar Signals to Multi-View Representations

As mentioned in Sec. 1, most radar detection methods
use FFTs as signal processing front-end. Despite the loss of
fine-grained temporal information, FFT enables pure time
domain radar echoes to be expressed in spatial (range and
angle) and Doppler. At the same time, it can provide more
intuitive and structured input to the model. Therefore, we
also use such classic signal processing to aquire the multi-
view RAD tensors.

Considering one-frame radar signals received from an
FMCW radar, it is composed of multiple chirps from mul-
tiple antennas and can be denoted as {Chirp

(j)
i }

ND,NA

i=1,j=1,
where ND and NA denote the numbers of chirps and an-
tennas, respectively. Then Range-FFT, FR(·), is conducted
on each chirp, Chirp

(j)
i , to obtain the DFT (Discrete FT)

results, then we can get DFT tensor as follows:

{FR(Chirp
(j)
i )}ND,NA

i=1,j=1 = {M(j)
R }

NA
j=1 ∈ RNR×ND×NA .

(1)
Where M

(j)
R denotes the Range-DFT matrix for j-th an-

tenna chirps, NR is the sampling number of each chirp.
Please note that we only consider the real part of FFT re-
sults for simplification. Then for each row of M

(j)
R , the

Doppler-FFT, FD(·), is conducted to get the Doppler-DFT
matrix as follows:

{FD(M
(j)
R [k, :])}NR

k=1 = M
(j)
RD ∈ RNR×ND . (2)

*Equal contribution. †Corresponding author.

Then we can group these DFT matrixes of all antennas to
form the second DFT tensor, {M(j)

RD}
NA
j=1 = MRD. Fi-

nally, the Angle-FFT, FA(·), is performed on MRD along
the antenna dimension to get final RAD tensor:

{FA(MRD[i, k, :])}NR,ND

i=1,k=1 = MRAD ∈ RNR×ND×NA .
(3)

In this work, {NR, NA, ND} = {256, 256, 64}. Ob-
viously, even a single frame of MRAD is also quite dense
and bulky for deep models. Further compression is needed
to obtain affordable input streams in different frequency
domains. Therefore a 2D-based multi-view compressing
method is adopted in [3], i.e., averaging over different fre-
quency domains. Taking angle frequency domain as an ex-
ample, 3D RAD tensor would be compressed as 2D RD
view representation as follows:

XRD[i, k] = 10 ∗ log

 1

NA

NA∑
j=1

|M[i,j,k]|2
 . (4)

Using such processing, the multi-view representations of
our models, {XRD, XAD, XRA} of one-frame radar ten-
sor can be obtained. And the input scale is agressively re-
duced from 256×256×64 to 256×64+256×64+256×256.

A.2. Additional Descriptions of PKCOn-Net

As we mentioned in Sec. 3.3, both PKCIn-Net and
PKCOn-Net share the similar MIMO structure, where the
encoding branches take multi-view radar tensor (i.e., RD,
AD, and RA) as input, and then the decoding branches make
predictions on both RD and RA views. Furthermore, LSE
is used to learn unified representation for the three encod-
ing streams in a common latent space and the ASPP mod-
ule aims to enhance the representation by injecting multi-
scale spatial information extracted from each single view.
Fig. 1 gives an intuitive illustration of the overall structure
of our PKCOn-Net. Compared with the PKCIn model, its
encoding branch for each single view is totally consisted of
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PeakConv layers, and only depends on single-frame input
to make prediction. Such design makes sure that, the object
signature characterization ability of our PeakConv can be
fully verified in the ablation study.

Figure 1. The overall framework of PKCOn-Net. Details of the
encoding branch for RD-view is given as an example.

A.3. In-depth Analysis of Original CARRADA An-
notation Generating Pipeline (AGP)

A.3.1 Original CARRADA AGP

Unlike the optical images which contain rich details for the
observed objects, object signatures in radar signals are dif-
ficult to interpret, i.e., it is hard to obtain the object se-
mantics in the form of radar representation. Hence whether
there is manual intervention or not, it is challenging to gen-
erate high-quality RSS annotations, e.g., masks with cate-
gory information. In order to automatically produce seman-
tic labels on multi-view radar frequency representations, a
visual perception integrated AGP was proposed for CAR-
RADA [4].

On the basis of synchronized-collected radar-camera
data streams, CARRADA AGP uses visual information of
images to obtain physical prior knowledge, including rough
positions, radial velocities and quite accurate categories of
the objects. Then these information is fused with the fil-
tered radar detection results based on CFAR [5] in the DoA-
Doppler space, where the Mean-Shift [1] clustering-based
temporal tracking is used to generate the semantic labels on
the RAD tensor. As shown in Fig. 2-(a) the CARRADA
AGP can be described as follows:

• Camera images processing. i) Vision semantic seg-
mentation: applying pre-trained Mask-RCNN [2] to
produce pixel region and category information of the
object on images; ii) Pixel position to real world co-
ordinates: transforming the obtained pixel-wise object
positions to real world coordinates with the help of in-

ternal and external camera parameters; iii) Velocity es-
timation: using the changes of object position between
two consecutive images to calculate the velocity vec-
tor, which is then converted to Doppler vector accord-
ing to the complementary angle of radar relative an-
gle. In this way, object’s category and RD information
could be estimated from camera images.

• Radar data processing. i) Direction of Arrival (DoA)
representation generation: converting the polar repre-
sentation of radar on RA view to Cartesian coordinate
system; ii) CFAR filtering: filtering the obtained DoA
representation through CFAR algorithm to get sparse
candidate points of the moving objects; iii) Doppler
information compensation: injecting Doppler infor-
mation into the filtered DoA representation and then
DoA-Doppler representation is presented.

• Tracking-based annotation generation. After re-
spectively gathering object information from camera
images and radar data, a tracking method based on
Mean-Shift is used to fuse these information to mark
final annotation: i) Tracking centroid initialization: the
object information extracted from camera image is first
projected to the DoA-Doppler representation, and then
the projected DoA-Doppler point is taken as the initial
centroid for tracking. ii) Tracking association: start-
ing from the initial centroid, Mean-Shift clustering is
conducted on the DoA-Doppler point cloud, where the
clustering results are measured by JS divergence. In
the following steps of object tracking and association,
new centroid for the adjacent frames (front and back)
would be initialized by the optimized clustering results
associated with RD points extracted from the camera
image. iii) RD and RA annotation generation: the fi-
nal clustering results are respectively projected to RD
and RA maps, in which the resolution of radar sensor
would be taken into consideration. Finally, multi-view
RSS annotations are presented.

A.3.2 The Defects of CARRADA AGP

CARRADA AGP can provide relatively accurate RD anno-
tations on semantic level. However, the annotations on RA
view are less satisfactory, as shown in Fig. 3. Through in-
depth analysis of CARRADA AGP, we found two reasons
for its inaccurate RA annotations:

• Low quality of cluster centroid initialization. Mean-
Shift-based tracking association is the key for gener-
ating annotations, and its clustering effects is highly
sensitive to the initial centroid selection. Better cen-
troid initialization will help the algorithm converge
to a more accurate target region. However, original



(a) CARRADA-AGP

(b) CARRADA-RAC-AGP

Figure 2. The illustrations of annotation generating pipeline for CARRADA [4] and our improved pipeline for CARRADA-RAC.

AGP relies heavily on the results estimated from cam-
era images, i.e., the RD-category information obtained
in image is considered entirely credible and directly
projected to the DoA-Doppler space. But in fact, the
vision position estimation often has a large deviation
from the actual situation as there is no depth informa-
tion in images, which results in the low quality of ini-
tial centroid. On the other hand, the DoA results used
to conduct clustering are filtered by CFAR with high
false alarm rate, which makes converging to the real
object position rather difficult. Consequently, further
correction of initial centroid is necessary, so as to pro-
vide a better starting point for the tracking association
algorithm.

• Low angle resolution of low-cost FMCW radar. It
can be observed from Fig. 3 that object signature has
serious tailing in the angle dimension, which would
deteriorate the angle estimation. On the one hand, this
phenomenon is caused by the low angle resolution of
the low-cost radar; on the other hand, it is also be-
cause that the acquisition of RA map requires multiple
FFT operations, which may cause the loss of original
radar signals accumulate in angle domain. Therefore,
more refined processing methods are needed to better
estimate the object location on RA maps, so as to ob-
tain more compact DoA-Doppler candidate points, and
thus providing the tracking association algorithm with
a search space closer to the real object location.

A.4. Calibration of CARRADA-RAC

To cope with the issues analyzed above, the following
two improvements have been made to the original CAR-
RADA AGP: i) refined RD association strategy, which con-
ducts on the estimated results of vision and radar to obtain
better initial centroids; ii) regionalized CFAR, which could
mitigate the inaccurate filtering of object candidates caused
by serious distortion of object signature in RA representa-
tion. The improved pipeline for CARRADA-RAC is illus-
trated in Fig. 2-(b), and the details are in the following parts
of this section.

A.4.1 RD Association for Centroid Initialization

In order to obtain better initialized centroid, a response
weighted nearest neighbor association (RWNNA) method
is proposed. To better perform RWNNA, a series of filter-
ing steps including CFAR with low false alarm rate, zero
frequency elimination (suppressing the clutters with zero
Doppler) and threshold filtering (top-k magnitude as the
threshold) are conducted on the original RD map to get
more compact and accurate object candidate points. Then
RWNNA will associate these processed RD point clouds
with the RD-Category results obtained by the vision estima-
tion. That is, for each vision candidate RD point, RWNNA
will find its nearest neighbor from the candidates RD points
filtered from the radar data, and assign its category to this
neighbor point.

However, due to the serious deviation of vision depth
estimation, more radar information should be taken into ac-
count in finding the nearest neighbor. Therefore, the ampli-



Figure 3. The illustration of RA-view annotations in CARRADA.

tude intensity for each RD point filtered from radar data is
considered as the distance definition for RWNNA, i.e., the
response weighted score. Given some candidate RD point
pj = {pRj , pDj } from vision estimation and its synchronous
filtered RD point cloud Ω = {ri = {rRi , rDi }}Ni=1, the re-
sponse weighted score, S can be defined as:

Si,j =
Ai

∥ri − pj∥2
. (5)

Where Si,j denotes the response weighted score between
pj and ri ∈ Ω, and Ai is the amplitude value of ri. The
goal of RWNNA is to find rk = argmax

ri∈Ω
Si,j for pj , and

assign the category information of pj to rk. Then the fol-
lowing tracking method will use rk with category informa-
tion for centroid initialization instead of using pj like CAR-
RADA AGP. It is clear to see that, compared with the orig-
inal pipeline where centroid initialization is solely depend
on the vision estimation, high-quality centroid with more
correct RD coordinate can be obtained by our proposed RD
association strategy.

A.4.2 Regional CFAR for RA Calibration

For low-cost FMCW radar, the resolution in angle dimen-
sion is usually much worse than other dimensions, e.g.,
range and Doppler. Going back to the signal processing
front-end of AGP, as shown in Fig. 2-(a), the frequency re-
sponse in angle domain is obtained from the last FFT oper-

ation, i.e., angle domain would suffer the most serious in-
formation loss. Therefore, the processing of angle domain
information requires extra care, which inspires us to come
up with the regional CFAR, a simple but effective CFAR
algorithm specific to RA view. The basic idea of this al-
gorithm is to perform CFAR under the constraint of more
reliable range information, while considering the tailing ef-
fect of target signature in angle domain. The details of the
regional CFAR is shown in Algo. 1. As illustrated in Fig. 4,
our RA annotations are obviously more consistent with the
characteristics of object signatures in RA maps.

A.5. Additional Contrastive Analysis of PeakConv
and Others

To more intuitively show the performance of various
types of convolutions on RSS tasks, we further plot Fig. 5.
Four conclusions can be obtained from the results:

• i. Larger receptive field leads to better perfor-
mance. For the same convolution type, 5 × 5 kernel
usually obtains better RSS performance than 3 × 3.
We argue that the improvement may not only because
more parameters are introduced during network learn-
ing, but also because the increased probability that in-
terference and object information are simultaneously
sampled.

• ii. Band-pass filtering mechanism is more suitable
for radar data processing. Among all the convolu-
tions, DilConv and ours always achieve better perfor-



Figure 4. The Comparison between RA-view annotations of CARRADA and CARRDA-RAC.

(a) Global mIoU comparison (b) Global mDice comparison

Figure 5. The global performance (the average performance of RD and RA views) comparison of our PeakConvs and other existing
convolutions.

mance. This encourages us to rethink the difference
between these two convolutions and others, i.e., both
of them can achieve band-pass filtering with the help
of dilation and guard band mechanism, respectively.

• iii. Interference (clutter/noise) energy/power esti-
mation is important for radar data processing. Al-
though the dilation of DilConv can realize guard band
effect similar to our PeakConvs to some extend, Dil-
Conv fails to exceed our PeakConvs in RSS perfor-
mance without explicitly considering the interference
estimation.

• iv. Temporal information can effectively improve
model capability. The MF models always achieve bet-
ter performance than their SF counterparts. It clearly

indicates that, temporal information should not be ig-
nored for learning tasks related to radar data. There-
fore, PeakConvs with temporal encoding capability is
worthy of in-depth research in our future work.
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Algorithm 1: Regional CFAR
Input: Point set of input RA map: ΩRA;
RA point set filtered by Mean-Shift tracking: ΩDoA.

1 Initialization:
2 Filtered RA point set: Ω⋆

RA = ∅ ;
3 Size of guard unit: NG;
4 Size of reference unit: NR;
5 CFAR energy: A⋆ = 0;
6 Detection threshold: λ.
7 for p = {pR, pA} in ΩRA do
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RA = Ω⋆
RA ∪ p⋆;

19 end
20 A⋆ = 0;
21 end
22 end

Output: Return filtered RA point set: Ω⋆
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