
A. Proof of Theorem 4.2
We prove the theorem by constructing a base point cloud

classifier f ′ and an adversarial point cloud P ′. Suppose
P1, P2, · · · , Pm are the m sub-point clouds for the point
cloud P . We let f ′ predict label y for Pj , where j =
1, 2, · · · ,My(P ), and predict label l (l ̸= y) for Ml(P )
sub-point clouds among the remaining m − My(P ) sub-
point clouds. When an attacker can arbitrarily add (or
delete or modify) at most t′(P ) + 1 points to P , we con-
struct the following P ′. For point addition (or deletion) at-
tacks, we can find P ′ such that a point is added (or deleted)
to Pj , where j = 1, 2, · · · , t′(P ) + 1. For simplicity,
we use P ′

j to denote the corresponding sub-point cloud by
adding (or deleting) a point to Pj . For point modifica-
tion/perturbation attacks, we can find P ′ such that a point
is deleted from P2·j−1 and a point is added to P2·j , where
j = 1, 2, · · · , t′(P ) + 1. For simplicity, we use P ′

2·j−1 and
P ′
2·j to denote the corresponding sub-point clouds. Suppose

l′ = argmaxl ̸=y(Ml(P )+I(y > l)). We let f ′ predict label
l′ for sub-point clouds P ′

j , where j = 1, 2, · · · , τ · (t′(P ) +
1) and τ is 1 (or 1 or 2 or 2) for point addition (or deletion or
modification or perturbation) attacks. Given the constructed
f ′ and P ′, we have My(P

′) = My(P )−τ · (t′(P )+1) and
Ml′(P

′) = Ml′(P ) + τ · (t′(P ) + 1). Then, we have the
following:

Ml′(P
′) + I(y > l′) (3)

=Ml′(P ) + τ · (t′(P ) + 1) + I(y > l′) (4)
=Ml′(P ) + (2 · τ − τ) · (t′(P ) + 1) + I(y > l′) (5)

>Ml′(P ) + 2 · τ · My(P )− (Ml′(P ) + I(y > l′))
2 · τ

− τ · (t′(P ) + 1) + I(y > l′) (6)
=My(P )− τ · (t′(P ) + 1) (7)
=My(P

′). (8)

We have Equation (6) from Equation (5) based on the fact
that ⌊x⌋ + 1 > x, where ⌊·⌋ is floor function and x is an
arbitrary non-negative real number. Therefore, the ensem-
ble point cloud classifier h′ built upon f ′ predicts label l′

instead of y for the constructed point cloud P ′.

B. Loss Term Proposed by Fan et al. [8]
Fan et al. [8] proposed the following loss term Lp(Du, C)

(Chamfer Distance):

Lp(Du, C) = 1

|Du|
X

(Ps,Pp)∈Du

[
1

|C(Ps)|
X

es∈C(Ps)

min
ep∈Pp

∥es − ep∥2

+
1

|Pp|
X

ep∈Pp

min
es∈C(Ps)

∥es − ep∥2], (9)

where C(Ps) is the completed point cloud outputted by C
for the sub-point cloud Ps, and es (or ep) is a point in C(Ps)
(or Pp).
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Figure 8. (a) Impact of the teacher model’s architecture on the cer-
tified accuracy of PointCert in the black-box setting of Scenario
III. Student model architecture is PointNet and dataset is Model-
Net40. (b) Pre-trained PCN improves PointCert in Scenario III.
(c) Impact of the fraction of a customer’s labeled point clouds on
PointCert in Scenario III.

C. Dataset Description

We adopt two publicly available benchmark datasets,
namely ModelNet40 [42] and ScanObjectNN [36], in our
evaluation. In particular, ModelNet40 contains 9,843 train-
ing point clouds and 2,468 testing point clouds. Each
point cloud has 10,000 points on average and belongs to
one of the 40 categories. In ScanObjectNN dataset, the
number of training point clouds and the number of test-
ing point clouds are respectively 2,319 and 583. The to-
tal number of classes in this dataset is 15. ScanObjectNN
dataset has two variants, namely ScanObjectNN-OBJ Only
and ScanObjectNN-OBJ BG. The difference is that the ob-
ject in ScanObjectNN-OBJ Only does not have background
while the object in ScanObjectNN-OBJ BG has. We use
both variants. In accordance with ModelNet40, we keep at
most 10,000 points in each point cloud in ScanObjectNN.
On average, each point cloud has 9,594 and 9,774 points
respectively for the two variants. Under the same setting,
we compare with existing defenses and conduct our experi-
ments using raw point clouds to simulate real-world attack
scenarios. It is noted that our PointCert still outperforms
previous defenses when the point clouds are all sub-sampled
to reduce their sizes as previous defenses [23].

D. Details of Compared Methods.

We compare PointCert with undefended model, random-
ized smoothing [5], and PointGuard [23].



• Undefended model: Undefended model is a base
point cloud classifier that is trained and tested in the
standard way. It does not have certified robustness
guarantees.

• Randomized smoothing [5]: Randomized smoothing
builds a certifiably robust classifier via adding a zero-
mean Gaussian noise with standard deviation σ to an
input. In particular, given a testing point cloud, ran-
domized smoothing constructs N noisy point clouds,
each of which is constructed by adding random Gaus-
sian noise to each dimension of each point of the point
cloud. Then, randomized smoothing uses a point cloud
classifier to predict the labels of the noisy point clouds
and takes a majority vote among the predicted labels
as the final predicted label of the point cloud. Ran-
domized smoothing provably predicts the same label
for a point cloud when the ℓ2-norm of the adversarial
perturbation added to its points is less than a threshold
(called certified radius).

When applied to point cloud classification, random-
ized smoothing can only derive certified radius against
point modification attacks [23]. Moreover, we can
transform certified radius to certified perturbation size
via employing the relationship between ℓ2-norm and
ℓ0-norm. In particular, suppose the points in a (adver-
sarial) point cloud lie in a space (denoted as Ω). We
assume the largest ℓ2-norm distance between two arbi-
trary points in the space Ω is bounded by η. In other
words, we have η ≥ maxω1∈Ω,ω2∈Ω ∥ω1 − ω2∥2.
Note that η could be different for different datasets.
For instance, η is respectively 2

√
3 and

√
15 on Mod-

elNet40 and ScanObjectNN datasets. Given a certi-
fied radius γ (under ℓ2-norm) obtained by randomized
smoothing and the η, the certified perturbation size can
be computed as ⌊γ2/η2⌋.

• PointGuard [23]: PointGuard is the state-of-the-
art certified defense against adversarial point clouds.
Roughly speaking, given a testing point cloud, Point-
Guard first creates N subsampled point clouds, each
of which is obtained by randomly subsampling k (a
parameter in PointGuard) points from the given point
cloud. Then, PointGuard uses a base point cloud
classifier to predict labels for those subsampled point
clouds. Finally, PointGuard counts the number of
subsampled point clouds whose predicted labels are l
(l = 1, 2, · · · , c). The label with the largest count is
viewed as the predicted label for the given point cloud.
PointGuard provably predicts the same label for a point
cloud when the number of arbitrarily added, deleted,
and/or modified points is less than a threshold, which
is the certified perturbation size.

Add 2
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Figure 9. Illustration of point addition attack (left), point deletion
attack (middle), and point modification attack (right). Blue (or
red) points are added (or deleted) by an attacker.

E. Details of Our Empirical Attacks.

In our experiments, we adopt the strong point addition,
modification, and perturbation attacks developed by [43]
and point deletion attack developed by [40] to attack an un-
defended model. Roughly speaking, Xiang et al. [43] for-
mulated point addition (or modification or perturbation) at-
tack as an optimization problem, i.e., adversarial points can
be crafted by minimizing a loss function using gradient de-
scent. Wicker et al. [40] developed an algorithm to identify
a set of critical points in a point cloud whose removal would
make a point cloud classifier predict an incorrect label for
the point cloud.

Since there are no existing adversarial point cloud at-
tacks tailored to randomized smoothing, PointGuard, and
PointCert, we generalize existing attacks to them to com-
pute Empirical Accuracy@t:

For generalized point addition attack, we iteratively
add t points using the attack in [43]. In particular, in the ith
iteration (i = 1, 2, · · · , t), we generate multiple noisy point
clouds with Gaussian noise (or subsampled point clouds or
sub-point clouds) from the testing point cloud with i−1 ad-
versarially added points in randomized smoothing (or Point-
Guard or PointCert). Then, we find a point such that the av-
erage loss (i.e., cross-entropy loss) of the base point cloud
classifier on the noisy point clouds (or subampled point
clouds or sub-point clouds) is maximized when the point
is added to them. We use gradient descent to find the point.
Moreover, to consider a powerful attack, we do not restrict
the dimension values of the point.

For generalized point deletion attack, we first generate
multiple noisy point clouds (or subsampled point clouds or
sub-point clouds) from a point cloud and then use the point
deletion attack in [40] to identify a set of critical points for
each of them. Finally, we count the number of times for
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Figure 10. More visual illustrations of point completion with sub-
point clouds. Each point cloud is reconstructed by a very small
number of points (at most 32 points), colored in blue. Motivated
by this observation, we utilize point cloud completion to build ro-
bust classifiers on the customer side in Scenario III.

each point being identified as a critical point and delete the
t points with the largest counts from the point cloud.

Our generalized point modification (or perturbation)
attack against randomized smoothing, PointGuard, and
PointCert is a combination of our point addition and dele-
tion attacks. Specifically, we first use our point deletion
attack to delete t points in a testing point cloud and then use
our point addition attack to add t points to the point cloud.

F. Additional Experiments
F.1. Comparing PointCert and PointGuard with

Different k

Certified defenses have accuracy-robustness trade-offs,
which are controlled by their parameters (e.g., m in
PointCert and k in PointGuard). By default, we use Point-
Guard with k = 256 such that PointGuard and PointCert
have similar accuracy under no attacks for fair compari-
son of robustness. We also compare PointCert (m = 400)
and PointGuard with different k, where the same k is used
for both training and inference. Figure 11(a) shows the re-
sults when PointGuard uses different k. When k is very
small, PointGuard can tolerate more perturbed points, but
its certified accuracy under no attacks is much lower than
PointCert. The reason is that PointGuard estimates proba-
bility bounds using a Monte-Carlo algorithm when comput-
ing certified robustness.

F.2. Comparing PointCert with Deterministic
PointGuard

We can make PointGuard deterministic via fixing the
seed in the random number generator. Moreover, we can
extend our techniques for PointCert to derive tight certified
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Figure 11. (a) Comparing PointCert and PointGuard with different
k. (b) Comparing PointCert with deterministic PointGuard. (c)
Comparing PointCert and Jia et al. [15].

robustness guarantees of such deterministic PointGuard.
However, the certified accuracy of such deterministic Point-
Guard is low, as shown in Figure 11(b). This is because
a single newly added adversarial point can influence all
subsampled point clouds in the worst-case for PointGuard.
However, a single added adversarial point can only influ-
ence one sub-point cloud for PointCert because the sub-
point clouds are disjoint. Note that, when the guarantees
are probabilistic, PointGuard achieves larger certified accu-
racy because the probability that the worst-case happens is
small and can be tolerated within the error probability.

F.3. Comparing PointCert with Jia et al. [15]

Jia et al. [15] develops almost tight l0-norm certified
robustness of top-k predictions for image classification.
Given a testing image I , their method creates different ab-
lated inputs via retaining b randomly selected pixels of I
and setting the remaining pixels to a special value. Then,
they feed the ablated inputs to a base classifier and count
the probabilities that the base classifier outputs for each la-
bel. In this way, they build a smoothed classifier that outputs
top-k predictions with l0-norm certified robustness. When
extending their method to point cloud classification, we set
k = 1 and create ablated point clouds via retaining b ran-
domly selected points while setting the remaining points to
a special value. From Figure 11(c), we observe that Jia et al.
achieves similar certified accuracy with PointGuard, which
is lower than PointCert. The reason is that these two meth-
ods both use randomly selected/subsampled points for cer-
tification. We note that Jia et al. is only applicable to point
modification attacks.
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(b) Point modification/perturbation attacks

Figure 12. Comparing the certified accuracy of PointCert in the three application scenarios under different attacks. The dataset is
ScanObjectNN-OBJ Only.
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Figure 13. Comparing the certified accuracy of PointCert in the three application scenarios under different attacks. The dataset is
ScanObjectNN-OBJ BG.
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Figure 14. Impact of m on the certified accuracy of PointCert in Scenario II.
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Figure 15. Impact of the fraction of a customer’s labeled point clouds on the certified accuracy of PointCert in Scenario III.



Figure 16. Examples of completed point clouds outputted by PCN when λ varies. PC stands for point cloud and gt stands for ground
truth. The word above a point cloud is its label predicted by the base point cloud classifier. The dataset is ModelNet40. The highlighted
λ = 0.0005 is used in our experiments.


