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Technical Appendix

A Visualization of Important Points in PointRCNN Detectors

In order to have an intuitive understanding of feature values corresponding to object localization
in the scene, we have also conducted the feature distribution visualization with PointRCNN on the
KITTI dataset. As shown in Figure 1, the foreground object (e.g., cars and pedestrians) features
are more salient while the background points are suppressed, indicating that the our method can
successfully localize the important points for not only voxel-based but also raw point-based detectors.

Figure 1: Visualization of feature distribution with PointRCNN on the KITTI dataset.

B Implementation Details

B.1 Implementation details on KITTI experiments

On PointPillars, the teacher network has 64 channels in the voxel encoder, 256 channels in the
backbone network, and 384 channels in the head. The students with around 4×/16 × compression
have 32/16 channels in their voxel encoders, 64/128 channels in their backbone networks, and 192/96
channels in their heads. On SECOND, the teacher network has 128 channels in the voxel encoder, 256
channels in the backbone network, and 512 channels in the head. The students with around 4×/16 ×
compression have 64/32 channels in their voxel encoders, 128/64 channels in their backbone networks,
and 256/128 channels in their heads. On PointRCNN, the teacher network has 16-32-64-128-256-512
channels. The 4×/8× compression students have 8-16-32-64-128-256/5-11-22-45-91-182 channels,
respectively. All the students are trained by 80 epochs with the AdamW optimizer. The learning
rate is initialized as 1e-3 and decayed to 1e-7 gradually during training. L2-norm regularization and
gradient clipping are also utilized to avoid overfitting and stabilize model training. Besides, random
flipping, rotation, and point shuffle are utilized as data augmentations.

B.2 Implementation details of nuScenes experiments

On PointPillars, the teacher network has 64 channels in the voxel encoder, 256 channels in the
backbone network, and 384 channels in the head. The students with around 2×/4 × compression
have 46/32 channels in their voxel encoders, 182/128 channels in their backbone networks, and

Submitted to IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2023). Do not
distribute.



272/192 channels in their heads. On CenterPoint, the teacher network has 128 channels in the voxel
encoder, 256 channels in the backbone network, and 256 channels in the head. The students with
around 2×/4 × compression have 91/64 channels in their voxel encoders, 182/128 channels in their
backbone networks, and 182/128 channels in their heads. Students are trained by 24 epochs with
the AdamW optimizer. The learning rate is initialized as 1e-3, firstly linearly warmed up and then
decayed by 10 at 20th and 23th epochs during training. L2-norm regularization and gradient clipping
are also utilized to avoid overfitting and stabilize model training. Besides, random flipping, rotation,
and point shuffle are utilized as data augmentations.

C More Experiments on Waymo Open Dataset (WOD) with CenterPoint

More experimental results on WOD are shown in Table 1. Experimental results on Waymo with
CenterPoint-Pillar are shown in the following table. Note that we follow the default training setting
in mmdetection3d by using 20% training data (Waymo-D5). We use the original CenterPoint model
which is also trained with 20% Waymo data as the teacher and the CenterPoint models with fewer
channels as the student. We follow the same training strategy by using the Adam optimizer and
One-Cycle learning rate scheduler and train models for 36 epochs. It is observed that our method
leads to 2.62 LEVEL_2 mAPH improvements, which outperforms the second-best method by 1.18
LEVEL_2 mAPH.

Table 1: Experimental results on Waymo Open Dataset with CenterPoint. A higher mAP and NDS
indicate better performance.

Model FLOPs (G) #Params (M) KD Method LEVEL_2 mAPH(↑)

CenterPoint

224.6 5.2 Teacher w/o KD 59.10

120.4 2.6

Student w/o KD 55.03
+ Heo et al. [3] 56.47
+ Tian et al. [5] 56.29
+ Wang et al. [6] 56.15
+ Ours 57.65

D Deployment and Training Efficiency

D.1 Latency Results

The latency of the student models in our method are shown in Table 2. These results are measured
on single 2080Ti GPU with TensorRT. It is observed that: (i) On PointPillars, our student leads to
0.9 and 1.8 mAP improvements on BEV and 3D detection and 2.2× acceleration on latency. (ii) On
SECOND, our student leads to 0.9 and 0.1 mAP improvements on BEV and 3D detection and 2.5×
acceleration on latency. (iii) On PointRCNN, our student achieves 3.4 × latency acceleration with
only 0.2 and 1.3 mAP drop on BEV and 3D detection, respectively. These observations indicates that
the effectiveness of our method is still significant in terms of latency reduction.

Table 2: Comparison on the latency between students and teachers on KITTI.
Model FLOPs (G) #Params (M) Latency (ms) BEV mAP 3D mAP

PointPillars Teacher 34.3 4.8 20.3 68.3 60.3
PointPillars Student 9.0 1.3 9.2 69.2 62.1

SECOND Teacher 69.8 5.3 35.1 72.3 66.1
SECOND Student 17.8 1.4 14.3 73.2 66.2

PointRCNN Teacher 104.9 4.1 178.6 75.3 70.9
PointRCNN Student 13.7 0.5 52.2 75.1 69.6
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D.2 Training Costs

Our method does not introduce significant additional training costs. Taking PointPillars on KITTI
as an example, the student trained with naïve feature-based knowledge distillation and the student
trained with our method requires 10.01 and 10.04 GPU hours, indicating our method does not leads
to much more training costs than traditional knowledge distillation methods. Note that since the
KNN operation and dynamic graph convolution in our method is applied to features of the voxels
or downsampled points instead of the raw inputs, local distillation in our method has good training
efficiency. KNN in our method is scalable to large-scale datasets and it does not lead to significant
computation overhead. In voxels-based detectors, KNN in our method is applied to the features of
each voxel instead of each point. Hence, the increment in the number of points directly increases the
computation complexity of KNN. In raw points-based detectors, KNN in our method is applied to the
feature of downsampled points instead of the inputted points. Hence its computation is ignorable
compared with the computation in the backbone network. Measured with 2080Ti GPU on Waymo
with CenterPoint, our experimental results show that KNN in our method account for less than 1%
training overhead. Besides, KNN has been well supported by modern hardware acceleration toolkits
such as CUDA. Moreover, since our method is only utilized during the training period, it does not
introduce additional computation during inference.

E Experiments on Model Compression with Layer Reduction Strategy

In order to achieve high-efficiency deployment of the 3D detectors, there are generally three kinds
of model compression strategies. The commonly used strategies include reducing the number of
model channels or depths (i.e., layers), and quantizing the weights and activations to shortened
bit-width. In this paper, we mainly use the channel reduction strategy. As shown in Table 2, this
compression strategy is simple and effective both to compress the model and speed up the model
inference. We have also conducted comprehensive experiments on depth reduction by using different
layer configurations of the SECOND backbone model in PointPillars on the KITTI dataset. The
results are shown in Table 3, in which the Number of Layers indicates the number of layers in each
stage. For example, “3+5+5=15” denotes a total number of fifteen layers with three, five, and five
layers for the first, second, and third stages, respectively. The results demonstrate that our method
significantly improves the models with reduced depth, consistently surpassing the teacher model in
both 3D and BEV mAP by a large margin. This evaluation strongly supports the potential of our
PointDistiller in model compression with other strategies, and we believe it is promising to extend
our method to strategies like quantization other than channel/depth reduction.

Table 3: Experimental results on students which have the same channels but fewer layers than their
teachers. The model in the first row indicates the teacher model.

Number of Layers FLOPs (G) #Params (M) KD BEV mAP(↑) 3D mAP(↑)

3+5+5=13 (Teacher) 34.3 4.8 × 68.3 60.3

2+3+3=8 24.4 3.3 × 67.8 60.1
2+3+3=8 24.4 3.3 ✓ 69.5 62.6

1+2+2=5 20.5 2.6 × 67.3 59.8
1+2+2=5 20.5 2.6 ✓ 69.3 62.3

1+1+1=3 14.5 1.8 × 67.1 59.2
1+1+1=3 14.5 1.8 ✓ 69.1 62.0

Broader Impact

This paper proposes a novel knowledge distillation method named PointDistiller to compress the
point clouds-based 3D detectors. It can accelerate and reduce the energy cost for object detection in
multiple applications and has no potential social impact.
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Limitations and Future Works

In this paper, we mainly evaluate our method on point cloud 3D detection on KITTI [2], nuScene [1]
and Waymo [4]. We will conduct more experiments for images and point clouds based multi-modal
detection on more datasets in the future.

F Comparison with More Methods

BEV Detection 3D Detection

KD Method Car Ped. Cyc. mAP KD Method Car Ped. Cyc. mAP

Student w/o KD 88.1 51.8 65.0 68.3 Student w/o KD 75.9 43.0 57.2 58.7
Yang et al., NeurIPS’22 88.3 52.2 65.1 68.5 Yang et al., NeurIPS’22 76.3 45.8 58.0 60.0
Hou et al., CVPR’22 88.3 52.1 65.5 68.6 Hou et al., CVPR’22 76.2 45.1 58.3 59.9
Ju et al., ACM MM’22 88.2 51.9 65.2 68.4 Ju et al., ACM MM’22 75.4 46.2 59.1 60.2
Ours 89.0 52.8 65.8 69.2 Ours 76.9 47.5 62.0 62.1

Table 4: Comparison experiments with PointPillars on KITTI.

We have added comparison with Yang et al. [? ], Hou et al. [? ] and Ju et al. [? ] . As shown in 4, our
method outperforms the second-best method by 0.6 mAP and 1.9 mAP on BEV and 3D detection.
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