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Models RN50 RNI101 ViT-B/32 ViT-B/16
Zero-shot CLIP  60.33  62.53 63.80 68.73
CoOp 62.95  66.60 66.85 71.92

CLIP-Adapter ~ 63.59  65.39 66.19 71.13
Tip-Adapter-F ~ 65.51  68.56 68.65 73.69
CaFo 68.79  70.86 70.82 74.48

Table 1. Ablation Study (%) of CLIP’s Visual Encoders. We
experiment different visual backbones on the 16-shot ImageNet.

1. Additional Performance Comparison

In Figure 1, we compare the performance of CaFo with-
out DALL-E’s [7] generated images or GPT-3’s [1] created
prompts on 10 datasets, which still consistently outperform
the second-best Tip-Adapter-F.

2. Additional Ablation Study

Zero-shot DALL-E. We additionally show the ablation
study of zero-shot generation by DALL-E on other three
datasets in Table 2, 3 and 4. We explore the best synthetic
number K’ for each category of different shots. Same as the
results on ImageNet, the larger K’ does not lead to better
few-shot performance since larger K’ would contain more
low-quality images and adversely affect the cache model.

CLIP’s Visual Encoders. We conduct CaFo with differ-
ent CLIP’s [6] visual encoders for comparison with other
methods. As shown in Table 1, CaFo consistently achieves
leading performance with different visual backbones, indi-
cating our generalizability to network architectures.

* Equal contribution. 1 Corresponding author

DALL-E 1 2 4 8 16

1 23.61 25.14 3225 3984 49.05
2 2331 2604 3294 4038 48.60
4 2436 2613 3258 3942 4737
8 2496 26.04 3192 3753 45.06
16 2484  26.01 3141 37.17 4227

Table 2. Zero-shot Results (%) on FGVCAircraft Dataset.

DALL-E 1 2 4 8 16

1 67.51 7045 7254 7780 79.51
2 67.91 69.1 72.54  77.16  79.94
4 68.09 7021 7296 78.06 79.75
8 68.60 69.36 7137 76774 79.43
16 67.78 6891 7190 7647 7888

Table 3. Zero-shot Results (%) on UCF101 Dataset.

DALL-E 1 2 4 8 16

1 64.89 6681 69.17 7034 72.60
2 64.70  66.63 69.08 7033  72.26
4 64.70 6646 68.62 70.09 72.25
8 64.16 65.62 6823 6946 71.78
16 64.03 6575 67.19 6929 7097

Table 4. Zero-shot Results (%) on SUN397 Dataset.

Other Foundation Models. For the cache model, we in-
vestigate other pre-trained foundation models besides CLIP
and DINO [2], including SimCLR [3], MAE [4], and
SLIP [5]. We preserve the prompting and generation by
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Figure 1. Performance (%) Comparison on 10 Datasets. Our method shows state-of-the-art performance for all few-shot settings on
different datasets. ‘CaFo w/o D.&G.” denotes CaFo without DALL-E’s generated images and GPT3’s created prompts.

Setting ImageNet OxfordPets EuroSAT
CLIP+SimCLR 62.3 65.7 87.1 89.4 55.7 75.9
CLIP+MAE 62.2 65.5 87.1 89.1 63.7 72.7
DINO+MAE 63.0 68.4 88.8 91.9 60.0 88.0
DINO+SimCLR 63.1 68.5 88.8 91.3 70.7 87.7
CLIP+DINO 63.8 68.8 89.2 91.6 69.0 88.7
SLIP+DINO 71.0 75.6 92.2 94.0 71.3 88.6

Table 5. Ablation Study (%) of Other Foundation Models in
the Cache Model. We report the accuracy of 1 and 16 shots on
ImageNet, OxfordPets, and EuroSAT.

GPT-3 and DALL-E, along with pzg as the ensemble base-
line during adaptive inference. As shown in Table 5,
‘CLIP+DINO’, as our final solution, performs the best
among different pre-training foundation models. Also, as
an enhanced version of CLIP, SLIP can intuitively achieve
higher accuracy in CaFo.

Zero-shot CaFo. As we leverage the pre-trained DALL-
E to generate the supplementary few-shot training set in a
zero-shot manner, our CaFo can be evaluated under zero-
shot settings the same as CLIP, for which none of the
human-annotated training images is given. In Table 7, we
report the best generated image number K’ of DALL-E for
zero-shot CaFo. The number “0” denotes Zero-shot CLIP.
For different datasets, the best number varies ranging from
1~16, and the larger number normally cannot get the better
result, probably due to the low-quality synthetic images. On
Caltech101 and EuroSAT, zero-shot CaFo largely surpasses
CLIP by +4.62% and +7.54%, indicating our superiority un-
der zero-shot settings.

Sharpness 3| 04 05 06 07 08 10
CaFo | 68.66 68.75 68.79 68.73 68.69 68.66

Table 6. Ablation Study (%) of Hyperparameter 3. We report
the 16-shot accuracy on ImageNet.

Hyperparameter 5. InFormula 5 and 6, we utilize a non-
linear modulator ¢(x) = exp(—f - (1 — x)) for the affinity
matrix of CLIP and DINO in the cache model, where 3 con-
trols the matrix sharpness. In Table 6, we experiment CaFo
with different 5 on 16-shot ImageNet and observe 0.6 per-
forms the best.

3. Additional Visualization

DALL-E’s Generated Images. In Figure 4, we visual-
ize more synthetic images generated by DALL-E on differ-
ent datasets. Benefited from the pre-trained DALL-E, the
generated images can well highlight the semantics of target
category and effectively expand the few-shot training set in
low-data regimes.

GPT-3’s Prompts for CLIP. In Figure 5 and 6, we show
more visualization of the prompts produced by GPT-3 and
how they assist our CaFo to rectify false predictions of the
original CLIP’s templates.

t-SNE. We present the t-SNE visualization of our CaFo
and the second-best Tip-Adapter-F in Figure 2. CaFo shows
more contrastive distribution of category clusters and well
mitigates some aliasing between similar classes.
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1 625 8978 6565 7752 50.12 3746 8733 6308 5733 6305 2046
2 62.69 9026 6683 7750 5000 4173 8749  63.02 57.63 6244 2031
4 6281 8998 6650 7758 5041 432 8771 6331 5746 63.12  20.64
8 6299 9067 6683 7756 50.12 4510 88.63 6326 5803 6283  20.49
16 6274 9091 6654 77.53 5024 4273 8749  63.16 5845 63.67 21.06

Table 7. Ablation Study (%) of Zero-shot CaFo via DALL-E on Different Datasets. We leverage DALL-E to generate different numbers

of synthetic images for zero-shot recognition.

Tip-Adapter-F CaFo

Figure 2. t-SNE Visualization. Different colors represent differ-
ent categories on 16-shot ImageNet.
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Figure 3. Learning Curves of Test Accuracy (%) for different
combinations of pre-trained models on 16-shot ImageNet.

Learning Curves. In Figure 3, we visualize the 20-epoch
learning curves of test accuracy on 16-shot ImageNet.
Compared to the single CLIP, collaborating with DALL-E,
DINO and GPT-3 significantly improves the convergence
speed and classification accuracy on test set.
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Figure 4. Additional Visualization of DALL-E’s Generated Images. Examples are from ImageNet, OxfordPets and Caltech101 datasets.



Our top prediction: great white shark

-We say that because:
Overall score:

...is large, with a dark gray upper
body and white underside.

...can be identified by its large
size, wide-set eyes, and
distinctive white belly.

26.75

25.61

CLIP's top prediction: tiger shark

-We don't say that because:
Overall score:

... identify by their stripes, their
large size, and their sharp teeth.

...has a very distinct pattern of
dark stripes on a lighter
background.

E—

Our top prediction: tiger shark

-We say that because:
Overall score:

...is a large, gray-green shark
with white spots and stripes.

..are large, predatory sharks
with a dark blue or grey back
and white belly.

25.55

26.08

CLIP's top prediction: great white shark

-We don't say that because:
Overall score:

.. are the largest species of
shark in the world .

...looks like a large, bulky fish
with a pointed nose, dark eyes,
and a white underbelly.

EE—

Our top prediction: tiger shark

-We say that because:
Overall score:

...are one of the largest shark
species.

...are large, predatory sharks
with a dark blue or grey back
and white belly.

26.45

27.00

CLIP's top prediction: hammerhead shark

-We don't say that because:
Overall score:

...looks like a shark with a large
head that resembles a hammer.

...looks like a shark with a
wide, flat head that resembles
a hammer.

E—

24.05

24.17

Our top prediction: stingray
-We say that because:

Overall score:

...has a flat body and a long tail
with a stinger on the end.

29125

...Is a large, flat fish with a long A

tail that has a sharp spine on the
end of it.

CLIP's top prediction: electric ray

-We don't say that because:
Overall score:

...is a flat fish that can deliver a
powerful electric shock.

...is a flat, disk-shaped fish
that can grow up to two feet
in length.

E—

26.36

27.06

Figure 5. Additional Visualization of GPT-3’s Prompts for CLIP. Above examples are from the ImageNet dataset.



Our top prediction: hen CLIP's top prediction: coucal

-We say that because: -We don't say that because:
Overall score: Overall score: hﬂ—

...are typically smaller and more ...is a crow-like bird with a long
delicate-looking than roosters. {2306 tail and a loud call. 21.56
...are small, domesticated birds R ...is a bird with a long tail and a
;hat a:re typically considered ’ dark brown plumage. eral
emale.
Our top prediction: ostrich CLIP's top prediction: bustard
-We say that because: -We don't say that because:
Overall score: Overall score: _
...can be identified by their long ...are a type of game bird with a
necks, long legs, and wings. 23 heavy body and long legs. 24.45
by their long necks and legs, 27.70 Large, long-necked bird witha |55
::z:: ::cr:?(eoefgv%;:]agsmg body, and big body and small head.

Our top prediction: goldfish CLIP's top prediction: coral reef

-We say that because: -We don't say that because:

Overall score: _Overall score: _
Goldfish are small, orange fish .Is a type of biotic reef

with shiny scales. 250 developing in tropical waters, 2213

The easiest way to identify a — ...a large underwater structure e

goldfish is by its color. made up of many small stony

coral polyps.

Our top prediction: house finch CLIP's top prediction: coucal

-We say that because: -We don't say that because:
Overall score: Overall score: h_
House finches have red heads ...a black bird with a long tail
and red breasts. 2383 that is native to Africa i
-2 sma_ll, plump §0ngbird with a 25.05 ...a species of bird that is 55,64
§hon tail and a wingspan of 8-9 typically dark in color with
inches. a long tail.

Figure 6. Additional Visualization of GPT-3’s Prompts for CLIP. Above examples are from the ImageNet dataset.



	. Additional Performance Comparison
	. Additional Ablation Study
	. Additional Visualization

