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Models RN50 RN101 ViT-B/32 ViT-B/16

Zero-shot CLIP 60.33 62.53 63.80 68.73
CoOp 62.95 66.60 66.85 71.92
CLIP-Adapter 63.59 65.39 66.19 71.13
Tip-Adapter-F 65.51 68.56 68.65 73.69
CaFo 68.79 70.86 70.82 74.48

Table 1. Ablation Study (%) of CLIP’s Visual Encoders. We
experiment different visual backbones on the 16-shot ImageNet.

1. Additional Performance Comparison

In Figure 1, we compare the performance of CaFo with-
out DALL-E’s [7] generated images or GPT-3’s [1] created
prompts on 10 datasets, which still consistently outperform
the second-best Tip-Adapter-F.

2. Additional Ablation Study

Zero-shot DALL-E. We additionally show the ablation
study of zero-shot generation by DALL-E on other three
datasets in Table 2, 3 and 4. We explore the best synthetic
number K ′ for each category of different shots. Same as the
results on ImageNet, the larger K ′ does not lead to better
few-shot performance since larger K ′ would contain more
low-quality images and adversely affect the cache model.

CLIP’s Visual Encoders. We conduct CaFo with differ-
ent CLIP’s [6] visual encoders for comparison with other
methods. As shown in Table 1, CaFo consistently achieves
leading performance with different visual backbones, indi-
cating our generalizability to network architectures.

∗ Equal contribution. † Corresponding author

DALL-E 1 2 4 8 16

1 23.61 25.14 32.25 39.84 49.05
2 23.31 26.04 32.94 40.38 48.60
4 24.36 26.13 32.58 39.42 47.37
8 24.96 26.04 31.92 37.53 45.06
16 24.84 26.01 31.41 37.17 42.27

Table 2. Zero-shot Results (%) on FGVCAircraft Dataset.

DALL-E 1 2 4 8 16

1 67.51 70.45 72.54 77.80 79.51
2 67.91 69.1 72.54 77.16 79.94
4 68.09 70.21 72.96 78.06 79.75
8 68.60 69.36 71.37 76.74 79.43
16 67.78 68.91 71.90 76.47 78.88

Table 3. Zero-shot Results (%) on UCF101 Dataset.

DALL-E 1 2 4 8 16

1 64.89 66.81 69.17 70.34 72.60
2 64.70 66.63 69.08 70.33 72.26
4 64.70 66.46 68.62 70.09 72.25
8 64.16 65.62 68.23 69.46 71.78
16 64.03 65.75 67.19 69.29 70.97

Table 4. Zero-shot Results (%) on SUN397 Dataset.

Other Foundation Models. For the cache model, we in-
vestigate other pre-trained foundation models besides CLIP
and DINO [2], including SimCLR [3], MAE [4], and
SLIP [5]. We preserve the prompting and generation by
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Figure 1. Performance (%) Comparison on 10 Datasets. Our method shows state-of-the-art performance for all few-shot settings on
different datasets. ‘CaFo w/o D.&G.’ denotes CaFo without DALL-E’s generated images and GPT3’s created prompts.

Setting ImageNet OxfordPets EuroSAT

CLIP+SimCLR 62.3 65.7 87.1 89.4 55.7 75.9
CLIP+MAE 62.2 65.5 87.1 89.1 63.7 72.7
DINO+MAE 63.0 68.4 88.8 91.9 60.0 88.0

DINO+SimCLR 63.1 68.5 88.8 91.3 70.7 87.7
CLIP+DINO 63.8 68.8 89.2 91.6 69.0 88.7
SLIP+DINO 71.0 75.6 92.2 94.0 71.3 88.6

Table 5. Ablation Study (%) of Other Foundation Models in
the Cache Model. We report the accuracy of 1 and 16 shots on
ImageNet, OxfordPets, and EuroSAT.

GPT-3 and DALL-E, along with pZS as the ensemble base-
line during adaptive inference. As shown in Table 5,
‘CLIP+DINO’, as our final solution, performs the best
among different pre-training foundation models. Also, as
an enhanced version of CLIP, SLIP can intuitively achieve
higher accuracy in CaFo.

Zero-shot CaFo. As we leverage the pre-trained DALL-
E to generate the supplementary few-shot training set in a
zero-shot manner, our CaFo can be evaluated under zero-
shot settings the same as CLIP, for which none of the
human-annotated training images is given. In Table 7, we
report the best generated image number K ′ of DALL-E for
zero-shot CaFo. The number “0” denotes Zero-shot CLIP.
For different datasets, the best number varies ranging from
1∼16, and the larger number normally cannot get the better
result, probably due to the low-quality synthetic images. On
Caltech101 and EuroSAT, zero-shot CaFo largely surpasses
CLIP by +4.62% and +7.54%, indicating our superiority un-
der zero-shot settings.

Sharpness β 0.4 0.5 0.6 0.7 0.8 1.0

CaFo 68.66 68.75 68.79 68.73 68.69 68.66

Table 6. Ablation Study (%) of Hyperparameter β. We report
the 16-shot accuracy on ImageNet.

Hyperparameter β. In Formula 5 and 6, we utilize a non-
linear modulator φ(x) = exp(−β · (1− x)) for the affinity
matrix of CLIP and DINO in the cache model, where β con-
trols the matrix sharpness. In Table 6, we experiment CaFo
with different β on 16-shot ImageNet and observe 0.6 per-
forms the best.

3. Additional Visualization
DALL-E’s Generated Images. In Figure 4, we visual-
ize more synthetic images generated by DALL-E on differ-
ent datasets. Benefited from the pre-trained DALL-E, the
generated images can well highlight the semantics of target
category and effectively expand the few-shot training set in
low-data regimes.

GPT-3’s Prompts for CLIP. In Figure 5 and 6, we show
more visualization of the prompts produced by GPT-3 and
how they assist our CaFo to rectify false predictions of the
original CLIP’s templates.

t-SNE. We present the t-SNE visualization of our CaFo
and the second-best Tip-Adapter-F in Figure 2. CaFo shows
more contrastive distribution of category clusters and well
mitigates some aliasing between similar classes.
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1 62.5 89.78 65.65 77.52 50.12 37.46 87.33 63.08 57.33 63.05 20.46
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8 62.99 90.67 66.83 77.56 50.12 45.10 88.63 63.26 58.03 62.83 20.49

16 62.74 90.91 66.54 77.53 50.24 42.73 87.49 63.16 58.45 63.67 21.06

Table 7. Ablation Study (%) of Zero-shot CaFo via DALL-E on Different Datasets. We leverage DALL-E to generate different numbers
of synthetic images for zero-shot recognition.

Tip-Adapter-F CaFo

Figure 2. t-SNE Visualization. Different colors represent differ-
ent categories on 16-shot ImageNet.
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Figure 3. Learning Curves of Test Accuracy (%) for different
combinations of pre-trained models on 16-shot ImageNet.

Learning Curves. In Figure 3, we visualize the 20-epoch
learning curves of test accuracy on 16-shot ImageNet.
Compared to the single CLIP, collaborating with DALL-E,
DINO and GPT-3 significantly improves the convergence
speed and classification accuracy on test set.
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Figure 4. Additional Visualization of DALL-E’s Generated Images. Examples are from ImageNet, OxfordPets and Caltech101 datasets.



Our top prediction: great white shark

Overall score:

...is large, with a dark gray upper 

body and white underside.

...can be identified by its large 

size, wide-set eyes, and 

distinctive white belly.

26.39

26.75

25.61

-We say that because:

......

CLIP's top prediction: tiger shark

Overall score:

... identify by their stripes, their 

large size, and their sharp teeth.

...has a very distinct pattern of 

dark stripes on a lighter 

background.

...

26.27

23.97

24.55

-We don't say that because:

...

Our top prediction: tiger shark

Overall score:

...is a large, gray-green shark 

with white spots and stripes.

...are large, predatory sharks 

with a dark blue or grey back 

and white belly.

26.33

25.55

26.08

-We say that because:

......

CLIP's top prediction: great white shark

Overall score:

... are the largest species of 

shark in the world。

...looks like a large, bulky fish 

with a pointed nose, dark eyes, 

and a white underbelly.

...

26.31

25.11

24.38

-We don't say that because:

...

Our top prediction: tiger shark

Overall score:

...are one of the largest shark 

species.

...are large, predatory sharks 

with a dark blue or grey back 

and white belly.

26.91

26.45

27.00

-We say that because:

......

CLIP's top prediction: hammerhead shark

Overall score:

...looks like a shark with a large 

head that resembles a hammer.

...looks like a shark with a 

wide, flat head that resembles 

a hammer.

...

26.63

24.05

24.17

-We don't say that because:

...

Our top prediction: stingray

Overall score:

...has a flat body and a long tail 

with a stinger on the end.

...is a large, flat fish with a long 

tail that has a sharp spine on the 

end of it.

29.20

29.25

28.64

-We say that because:

......

CLIP's top prediction: electric ray

Overall score:

...is a flat fish that can deliver a 

powerful electric shock.

...is a flat, disk-shaped fish 

that can grow up to two feet 

in length。

...

29.03

26.36

27.06

-We don't say that because:

...

Figure 5. Additional Visualization of GPT-3’s Prompts for CLIP. Above examples are from the ImageNet dataset.



Our top prediction: hen

Overall score:

...are typically smaller and more 

delicate-looking than roosters.

...are small, domesticated birds 

that are typically considered 

female.

24.33

23.06

24.39

-We say that because:

......

CLIP's top prediction: coucal

Overall score:

...is a crow-like bird with a long 

tail and a loud call.

...is a bird with a long tail and a 

dark brown plumage.

...

22.94

21.56

21.91

-We don't say that because:

...

Our top prediction: ostrich

Overall score:

...can be identified by their long 

necks, long legs, and wings.

...by their long necks and legs, 

their large egg-laying body, and 

their lack of wings.

29.14

28.55

27.70

-We say that because:

......

CLIP's top prediction: bustard

Overall score:

...are a type of game bird with a 

heavy body and long legs.

Large, long-necked bird with a 

big body and small head.

...

28.97

24.45

24.92

-We don't say that because:

...

Our top prediction: goldfish

Overall score:

Goldfish are small, orange fish 

with shiny scales.

The easiest way to identify a 

goldfish is by its color.

24.92

24.39

24.36

-We say that because:

......

CLIP's top prediction: coral reef

Overall score:

...is a type of biotic reef 

developing in tropical waters.

...a large underwater structure 

made up of many small stony 

coral polyps.

...

23.36

22.13

21.64

-We don't say that because:

...

Our top prediction: house finch

Overall score:

House finches have red heads 
and red breasts.

...a small, plump songbird with a 
short tail and a wingspan of 8-9 
inches.

26.84

25.93

25.05

-We say that because:

......

CLIP's top prediction: coucal

Overall score:

...a black bird with a long tail 
that is native to Africa

...a species of bird that is 
typically dark in color with 
a long tail.
...

25.17

21.97

22.64

-We don't say that because:

...

Figure 6. Additional Visualization of GPT-3’s Prompts for CLIP. Above examples are from the ImageNet dataset.
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