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A. Anomaly Generation Strategies

This section details the generation of simulated anomalies,
as shown in Fig. 1. A noise image is generated by a Perlin
noise generator [8, 13] (Fig. 1,P), and then the noise parts
within a target area are retained as the ground truth mask
(Fig. 1,M). As the shape, size, and number of generated
anomalous regions vary widely, we synthesize simulated
anomalies (Fig. 1,S5) as:

S=MoN+(1-B8)(MeA)+B(MeN) (1)

where N is the normal sample, A is the source image of
the anomaly, M is the inverse of M, @ is the element-wise
multiplication operation, 3 is the opacity parameter for better
combination of abnormal and normal regions. When A is
an image randomly sampled from the DTD dataset [3] and
is augmented (Augy, Fig. 5 in Section 3.4), we define S as
a HEterologous Anomaly (HEA). Correspondingly, when
A is an image randomly sampled from augmented normal
samples, we define S as a HOmology Anomaly (HOA). In
particular, the normal image is first augmented (Aug;, Fig. 5
in Section 3.4), then is evenly divided into an 8 x 8 grid and
randomly arranged before being reassembled [12].

Fig. 2 shows the anomalies generated by different strate-
gies. In addition to increasing the number, extended anoma-
lies (EA) increase the variety of seen anomalies. HEA and
HOA supplement potential unseen anomalies with anomalies
significantly different from seen anomalies.

B. Experiments
B.1. Dataset Split

MVTec AD [1] is a widely used anomaly detection and
localization benchmark with 15 classes, each containing one
to several subclasses of anomalies. Following the general set-
ting proposed by DRA [5], the 10 labeled anomaly samples
are sampled from all possible anomaly classes in the test
set per dataset. These sampled anomalies are then removed
from the test data. Both BTAD [7] and KolektorSDD2 [2]
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Figure 2. Examples of anomalies generated by different strategies.

are real-world industrial datasets containing three product
types and one product type, respectively. The general setting



Category DRAEM [13] CFLOW [6] SSPCAB [9] RD4AD [4] PatchCore [10] Ours

Pt Ot At It P{ Ot At I+ Pt Of At It Pt Of Af It Pt Of At It Pt Ot Af
Classl 869 754 563 209 91.6 941 841 334 953 789 612 299 952 928 830 416 844 896 728 131 100 927 903 50.1
Class2 858 837 661 182 982 996 982 502 939 920 804 183 997 997 991 57.8 100 99.7 993 555 960 97.1 956 448
Class3 980 903 782 329 883 937 860 329 99.6 903 792 317 812 939 852 318 940 962 924 509 992 942 913 324
Classd 993 986 955 624 100 99.5 985 651 999 991 97.6 747 999 991 977 646 100 994 984 882 997 982 967 67.2
Class5 979 564 399 219 863 943 845 507 8L1 536 359 155 741 867 643 312 906 952 773 296 969 949 861 302
Class6 100 960 893 715 965 96.1 879 469 100 954 883 700 920 883 689 303 994 981 935 712 100 984 957 717
Class7 100 967 908 58.1 989 960 918 614 100 948 870 511 998 952 914 657 99.9 969 948 777 100 951 913 513
Class8 997 929 904 342 567 799 510 32 964 9l1 889 232 652 862 67.6 70 606 864 565 7.8 934 971 951 344
Class9 502 497 133 0.0 999 999 998 651 509 604 261 0.1 100 998 994 265 964 994 957 459 97.1 987 968 464
Classl0 927 942 854 357 957 980 944 429 865 89.1 747 244 996 990 97.9 511 999 99.6 99.0 496 999 99.6 99.0 656
Average 91.1 834 705 356 912 951 87.6 452 904 845 719 339 907 941 855 408 925 961 880 49.0 982 966 938 d49.4

Table 1. Anomaly Detection and Localization on DAGM [11]. “I”, “P”, “O” and “A” respectively refer to the five metrics of image
pixel auroc, pro and ap. The best results are highlighted in bold.

Category DRAEM [13] CFLOW [6] SSPCAB [9] RD4AD [4] PatchCore [10] Ours

Pt Ot At It Pt Ot At If Pt Ot At It Pt Ot At I+ Pt Of At It Pt Of Af
01 985 915 614 170 934 948 60.1 39.6 962 924 628 181 988 957 728 493 966 96.5 784 471 100 96.6 814 3838
02 68.6 734 390 233 790 939 569 655 693 656 286 158 849 960 558 66.1 813 949 540 563 841 951 544 657
03 99.8 963 843 172 99.1 995 979 568 99.4 924 710 50 995 99.0 988 451 999 992 964 512 999 99.6 983 57.4
Average 89.0 87.1 61.6 192 905 961 71.6 540 883 835 541 13 944 969 758 53.5 926 969 763 515 947 97.1 780 54.0

Table 2. Anomaly Detection and Localization on BTAD [7].

auroc,

used in BTAD and SDD?2 is same to that used in MVTec.
DAGM [11] contains 10 texture classes, and the original
training set for each class consists of normal and abnormal
samples. For each class, we first move all anomalous sam-
ples from the original training set to the original test set, and
then randomly select ten anomalous samples from the test
set as part of the new training set. These sampled anomalies
are then removed from the test set.

B.2. More Detailed Comparison

Table 1 includes fine-grained anomaly detection and local-
ization performance comparisons on all DAGM sub-datasets.
We observe that PRN consistently performs well on all 10
sub-datasets and, in the average scenario, performs best
across all four criteria. In particular, our approach outper-
forms previous methods by a large margin in two metrics,
image auroc and pro.

We also compare the anomaly detection and location
performance of each method in detail on the three BTAD
products and report the numerical results in Table 2. It can
be concluded that our method achieves consistently higher
performance than the others on different categories .

B.3. More Qualitative Examples

We further qualitatively evaluate the performance of
anomaly detection and location compared to state-of-the-art
methods by introducing additional visualizations, as shown
in Fig. 3, Fig. 4 and Fig. 5. Our method accurately detects
and localizes anomalies in a wide range of sizes, shapes and
numbers, as demonstrated by qualitative comparison results.
Moreover, we argue that some of the localization errors can
be attributed to inaccurate ground truth labels on anomalies.
An example of this is shown in the second row of Fig. 5,

where the ground truth does not label all anomalous regions.
Another example is shown on the left in the fourth row of
Fig. 4, where the ground truth labels a broad anomaly re-
gion, but our method correctly localizes the anomaly region.
These imprecise annotations inevitably impact the anomaly
localization scores of the evaluated methods.
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Figure 3. More qualitative examples on MVTec [1].
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Figure 4. Qualitative examples on DAGM [11].

lund, and Mubarak Shah. Self-supervised predictive convolu-
tional attentive block for anomaly detection. In CVPR, 2022.
2

[10] Karsten Roth, Latha Pemula, Joaquin Zepeda, Bernhard
Scholkopf, Thomas Brox, and Peter Gehler. Towards total
recall in industrial anomaly detection. In CVPR, 2022. 2

[11] Matthias Wieler and Tobias Hahn. Weakly supervised learn-
ing for industrial optical inspection. 2007. 2, 3

Input GT DRAEM PatchCore Ours

[12] Minghui Yang, Peng Wu, Jing Liu, and Hui Feng. Memseg:
A semi-supervised method for image surface defect detec-
tion using differences and commonalities. arXiv preprint
arXiv:2205.00908, 2022. 1

[13] Vitjan Zavrtanik, Matej Kristan, and Danijel Skocaj. Draem-a
discriminatively trained reconstruction embedding for surface
anomaly detection. In /CCV, 2021. 1, 2

Figure 5. Qualitative examples on BTAD [7].



