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Input GT AutoTune

Real Image Denoising Results Tuning Denoising Intensity ( )

Figure 1. RCD real image denoising results on SIDD. GT: ground truth. AutoTune: AutoTune results of RCD.

A. More Visualization Results

This section shows more visual results to demonstrate
the effectiveness of our proposed RCD. Besides, we also
provide demo video for showing features of RCD (Please
see in attached files of supplementary material).

Real Image Denoising. We visualize RCD denoising
results on SIDD test set in Fig.1. The left part shows the
comparison of RCD (AutoTune) and real image ground truth,
and the right part gives RCD results by tuning the noise level.
As demonstrated, RCD can support controllable real image
denoising and yield high visual quality results.

Video denoising results. We further show the qualitative
performance of FastDVD-RCD in Fig.2, with comparison to
baseline uncontrollable FastDVDnet. Consistent with image
denoising, FastDVD-RCD can recover more details of some

degraded images, which may be benefited from RCD’s richer
representation capacity by integrating multiple noise maps

Comparison of RCD and AdaFM on SIDD. In Fig.3
we show the comparison of RCD and representative con-
ventional controllable denoising method AdaFM. Compared
to RCD and GT, AdaFM results have more artifacts and
remained noises.

B. Implementation Details
Choice of Basic Image Model. Considering the appli-

cation of real-time image controllable denoising, we need
to select the base models with acceptable running time and
parameters. Besides, the base model is required to support
prior-free blind denoising to be applied on real-world data
and should be able to be trained in an end-to-end manner
for level loss to be pluged-in readily. Our models on single
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GT Base AutoTune GT Base AutoTune

Figure 2. Video denoising results. Base: uncontrollable baseline.

Input GT AdaFM RCD (AutoTune)

Figure 3. Comparison of RCD and AdaFM on SIDD real image
denoising.

image denoising are based on the SOTA restoration model
NAFNet [1], which can be scaled flexibly from 1.1 GMACs
to 65 GMACs. To balance the running time and the perfor-
mance, we adopt NAFNet with width 16/32 and number of
blocks 8. We also conduct experiments on NAFNet base

model with width 32 and number of blocks 36 to verify the
effectiveness of RCD on relatively larger model.

Alteration of Basic Model Only two adjustments of the
base model are required to support our proposed editable
denoising. First, we alter the output channel number of the
base model ending layer from output image channel num-
ber to L× output image channel number, L is the number
of the predefined noise level. For example, when training
noise level from 0 to 60, the uniform noise level gap be-
tween each noise map is 5 and there are 13 of them in total
([0,5,10,...55,60]). Then we apply noise decorrelation on
the those fixed-level noise maps generated by our model
and also feed them to the AutoTune module. Second, for
your AutoTune module, we add an additional CNN layer to
predict a feature-map. After the adaptive average pooling
layer and temperatured softmax activation, we attain a series
of weights to fuse the 13 noise maps as model-suggested
guidance to the user.

Model Variants Details. We calculate the parameters of
NAFNet base model and our NAFNet-RCD model. Com-
pared with NAFNet, NAFNet-RCD only has alterations on
two CNN layers, which is negligible for normal-size net-
works. Specifically, these additional parameters account for
0.03%, 3.60%, and 9.17% of total parameters for model
size 1) NAFNet-RCD: width 32, number of blocks 36, 2)
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NAFNet-RCD-small: width 16, number of blocks 8, 3)
NAFNet-RCD-tiny: width 16, number of blocks 8. Please be
noted that the number of additional parameters is only 7.7K
even though it accounts for 9.17% of light model NAFNet-
RCD-tiny.

C. Additional Experiments
Results on other real-world datasets. We further evalu-

ate our RCD models on the PolyU [3] and Nam [2] bench-
marks. Both the RCD and baseline models are trained on
SIDD real-world data. Table 1 shows that on both bench-
marks, the RCD models can still perform controllable denois-
ing without sacrificing much performance, and on Nam, the
RCD models even slightly outperform their uncontrollable
baselines.

Table 1. Image denoising results on PolyU and Nam. PolyU: results
on real-world PolyU test sets. Nam: results on real-world Nam test
set.

Method PolyU Nam
PSNR SSIM PSNR SSIM

NAFNet-tiny 38.52 0.9827 38.93 0.9881
NAFNet-RCD-tiny 38.36 0.9826 39.03 0.9881

NAFNet 39.11 0.9837 39.54 0.9894
NAFNet-RCD 39.07 0.9837 39.67 0.9896

Q4. Results on more architectures.
We also test our RCD using the Restormer [4] model. As

shown in Table 2, Restormer-RCD slightly outperforms its
baseline, consistent with NAFNet.

Table 2. Restormer results on SIDD test set with additive Gaussian
noise (σ from 0 to 50 ).

Method SIDD Synthetic noise
PSNR SSIM

Restormer 41.31 0.9763
Restormer-RCD 41.79 0.9781
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