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A. Additional Experiments
A.1. PIRenderer v.s Our FaceRender on Face Reenactment

We compare our FaceRender and PIRenderer [8] on the task of video-driven face reenactment. We have already shown
the visual comparisons in Fig 9 of the main paper, here, we give the numerical comparison results on the HDTF dataset. We
evaluate these two methods using cross-identity settings and the results are conducted over 354 videos. As shown in Tab A1,
the proposed method shows a much better visual quality in terms of FID and CSIM, which demonstrates the advantage of
the proposed methods for audio-driven talking-head generation. For more differences between the proposed method and
PIRenderer for this task, we also discuss the influence of the face alignment coefficient in Sec. B.4.

Method FID ↓ CPBD ↑ CSIM ↑
PIRenderer [8] 26.521 0.363 0.857
Our face render 19.646 0.334 0.880

Table A1. Face render evaluation.

A.2. Cross-ID Settings and More Test Datasets

We conduct the same-identity experiment in the main paper, where the first frame of the test video is regarded as the
reference image and the corresponding audio is regarded as the driving signal, generating a video that has the synchronized
expression but diverse head poses. Differently, in the cross-identity experiment, the driving audio comes from another video.
This kind of setting is also widely used in the comparison of the video-driven face reenactment [9]. In the cross-identity
experiment, the reference pose of PC-AVS comes from the audio’s corresponding video.

To this end, besides the HDTF [13] dataset in the main paper (we evaluate the results under the same-identity experiment),
we also evaluate our method on HDTF and VoxCeleb2 [6] datasets in cross-identity setting as in Table A2 and Table A3.
VoxCeleb2 contains over 1 million utterances of 6112 speakers, in which there are 36k utterances of 118 speakers in the test
set. We randomly select 3 videos for each speaker, obtaining 354 videos as for evaluation. The evaluation metrics are the same
as those the same-identity experiment on the HDTF dataset. We directly evaluate the pretrained model of all the models on
this dataset. We crop the videos in the same way used in [9] and resize the frames to 256×256. As shown in the Tables, the
proposed method shows better lip synchronization in this kind of setting on both datasets in most metrics. The same trend is
also observed in the head motion and visual quality of the final videos.
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Method Lip Synchronization Learned Head Motion Video Quality
LSE-C↑ LSE-D↓ Diversity↑ Beat Align↑ FID↓ CPBD↑ CSIM↑

Real Video 8.211 6.982 0.259 0.271 0 0.428 1.000
Wav2Lip* [7] 9.641 6.035 N./A. N./A. 21.727 0.368 0.846
PC-AVS** [14] 8.959 6.435 N./A. N./A. 99.098 0.201 0.648
MakeItTalk [15] 4.937 10.231 0.2553 0.276 26.829 0.333 0.834
Audio2Head [10] 7.237 7.648 0.1783 0.260 24.404 0.282 0.818
Wang et al. [11] 4.634 10.457 0.2260 0.265 22.302 0.294 0.805
Ours 7.343 7.709 0.2759 0.284 20.886 0.334 0.846

Table A2. Comparison with the state-of-the-art method on HDTF dataset [13] with cross-identity setting. Wav2Lip* achieves the best video
quality since it only animates the lip region while other regions are the same as the original frame. In cross-identity setting, PC-AVS** is
evaluated using the reference pose from the driving video and fails in some samples.

Method Lip Synchronization Learned Head Motion Video Quality
LSE-C↑ LSE-D↓ Diversity↑ Beat Align↑ FID↓ CPBD↑ CSIM↑

Real Video 6.209 7.911 0.4879 0.266 0 0.099 1.000
Wav2Lip* [7] 7.640 7.099 N./A. N./A. 19.293 0.107 0.936
PC-AVS** [14] 7.168 7.443 N./A. N./A. 111.043 0.074 0.494
MakeItTalk [15] 3.756 10.222 0.5230 0.275 23.501 0.063 0.883
Audio2Head [10] 5.266 8.788 0.2064 0.273 54.694 0.098 0.602
Wang et al. [11] 3.441 10.519 0.2547 0.272 42.092 0.136 0.750
Ours 5.571 8.503 0.5211 0.277 22.738 0.081 0.893

Table A3. Comparison with the state-of-the-art method on VoxCeleb2 [6] dataset under cross-identity setting. Wav2Lip* achieves the best
video quality since it only animates the lip region while other regions are the same as the original frame. In cross-identity setting, PC-AVS**
is evaluated using the reference pose from the driving video and fails in some samples.

A.3. Emotion Control

In ExpNet, although we mainly focus on lip movement and eye blinking, our method can also control the emotion of the
generated video without re-design. As shown in Fig. A1, the emotion of generated video keeps the same with source image.
Thus, we can perform emotion transfer through the source image, and then a talking-head video with different emotions can be
produced in our system.

B. More Implementation Details
We provide the detailed dataset pre-processing, network structures, loss functions, the discussion on alignment coefficients

and how to generate long sequence using PoseVAE in Sec. B.1, Sec. B.2, Sec. B.3, Sec. B.4 and Sec. B.5.

B.1. Dataset Pre-processing Details

Audio We follow Wav2Lip [7] to pre-process the audio. Specifically, we pre-process all the audio to 16k Hz. Then, we
convert it to the mel-spectrograms with FFT window size 800, hop length 200 and 80 Mel filter banks. Thus, for each frame,
we have 0.2s mel-spectrogram feature with the shape of 16×80.

Lip-only coefficients To avoid the disturbance of other facial expression (e.g., emotions), we regard lip-only expression
coefficients as the ground truth to train ExpNet. Since 3DMM expression coefficients are mixed, we first perform Wav2Lip [7]
on a single image and the audio, which generates the still video with only lip movement, and then, extract the full facial
expression coefficients on the generated video. These expression coefficients represent lip-only animation with relatively still
upper faces.



Source image Generated video

Figure A1. The generated video can retain the emotion of the source image more effectively.

B.2. Network Structure Details

ExpNet Our ExpNet is built via an audio encoder ΦA and a linear layer ΦM . We use the parameters from the pre-trained
Wav2Lip to initialize the audio encoder. As discussed in the main paper, we first encode the audio feature into an audio
embedding. And then, we generate the expression coefficients βg

{1,...,t} with additional coefficients of the first frame β0

and blink control signal zblink. As shown in Fig. B2 (c), the audio encoder ΦA is built via a four stages ResBlock-C as in
Fig. B2 (a). we only use a single linear layer ΦM as in Fig. B2 (b).

PoseVAE As shown in Fig. B2 (e), both the encoder and decoder of our PoseVAE contain several linear layers. For the
conditions, the encoder µ and

∑
is mapped through the concatenation of the ∆ρ{1:T}, the 46 dimensional one-hot vector

Zstyle (our training dataset contains 46 identities) and the encoded features from audio encoder ΦA. As for the decoder, we
first add the re-parameterized feature and the style embedding. Then, we concatenate the audio feature similar to the encoder.

FaceRender As discussed in the main paper of Fig. 5, our face render is inspired by the motion transfer method face-
vid2vid [12]. We introduce a mappingNet to remap the learned 3DMM motion coefficients to the space of unsupervised 3D
keypoints. As shown in Figure B2 (d), the mapping network contains the t-frames ([t− 2 : t+ 2]) motion coefficients of pose
ρ[t−2:t+2] and expression β[t−2:t+2] to generate the motions representation of face-vid2vid [12] ( yaw, pitch, roll, tr,
and δ) in frame t. Other networks in our FaceRender have the same structures in [12]. Please refer to face-vid2vid [12] for
more network details about the FaceRender.

B.3. Loss Function Details

ExpNet As described in the main paper, we use the expression coefficients which are generated from the pre-trained
wav2lip [7] and then perform 3D face capture [1] as guidance (lip-only expression coefficients for short). Basically, we
calculate Ldistill through the Mean-Squared loss between lip-only expression coefficients and the generated expression
coefficients in training. Formally, a T -frames Ldistill can be written as:

Ldistill =
1

T

T∑
t=1

(
βg
t − βlip

t

)2

(1)

Where βlip
t and βg

t are the lip only and the generated expression coefficients, respectively.
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Figure B2. The architectures of the networks in our model. Here, ‘3×3-s1,1-p1-d1-Conv-32’ means a convolutional layer with the kernel size
3×3, the stride size (1,1), padding size (1,1), the dilation size (1,1) and the output channel is 32.

We also calculate the loss function on the projected 2D landmarks of the rendered 3D face. In detail, as shown in Fig. B3,
the height and width of the eye area in the t-th frame are defined as follows:

Ew
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t
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2
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Where Ew
t is the width of the eye area in frame t, Eh

t is the width of the eye area in frame t, P i
t is the i-th landmark in frame t.
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Figure B3. Face landmarks visualization.

Figure B4. Example of the cropped interesting region in the 3D rendered face sequences to calculate the lip-reading loss.

we define Rt =
Eh

t

Ew
t

as the predicted and calculate eye loss as follows:

Leye =

T∑
t=1

∥∥Rt − Zblink
t

∥∥
1
, (5)

where Zblink
t is the eye blinking control signal the of t-th frame which is generated uniformly and randomly. To eliminate the

effects of Leye on other facial expression, we also constrain the minimal modification in the other landmarks. Thus,

Llks = λeyeLeye +
1

T

1

N

T∑
t=1

M∑
i=1

∥∥P i
t − P i′

t

∥∥2
2
, (6)

where λeye is set to 200, P i′
t is the landmarks predicted by the lip-only expression coefficients, M is a set of landmarks other

than the eye areas.
Besides, we use pretrained lip-reading models proposed in [5] to calculate lip reading loss Lread inspired by [2]. We use the

pretrained video-based lip-reading model where the input is a sequence (5 frames in our case) of the cropped interesting region
around the mouth (as shown in Fig B4) and the target is a series of the character sequence. So we employ a differentiable 3D
face render [1] in ExpNet to render the images through the generated expression coefficients, then, we crop the mouth area of
the rendered images using the bounding box of the mouth landmarks, obtaining the logit of the character sequences Cp. As
for the supervision, we generate the logit of the character sequences Cgt from the ground truth audio using the audio-driven
lip-reading model. Thus, our goal is to minimize the difference between Cp and Cgt. In other words,

Lread = CrossEntrory(Cgt,Cp) (7)

Overall, the final loss of ExpNet is given by :

Lexp = λdistillLdistill + λreadLread + λlksLlks (8)



Where λdistill, λread, λlks are set to 2, 0.01, and 0.01, respectively.

PoseVAE We first calculate the reconstruction loss by applying Mean-Squared loss between the generated ∆ρ′{1...T} and the
original ∆ρ{1...T}:

LMSE =
1

T

T∑
t=1

(∆ρ′t −∆ρt)
2 (9)

Meanwhile, we encourage the similarity of the latent space distribution and the Gaussian distribution with the mean vector µ
and covariance matrix

∑
. So we define LKL as the Kullback–Leibler (KL) divergence between the latent space distribution

and the Gaussian distribution. We also employ a discriminator D based on the PatchGAN [4] to perform 1D convolution on
the head motion sequence as Speech2Gesture [3]. We define the adversarial loss LGAN :

LGAN = argmin
G

max
D

(G,D) (10)

Where G is proposed PoseVAE. The total loss of PoseVAE can be summarized as follows.

Lpose = λMSELMSE + λKLLKL + λGANLGAN (11)

where λMSE , λKL and LGAN are set to 1, 1, and 0.7, respectively.

FaceRender We add a MappingNet to map the explicit 3DMM coefficients to the space of the face-vid2vid [12], to training,
apart from the loss functions used in face-vi2vid [12], we add L1 regularization on the domain of unsupervised keypoints:

L1 =
1

N

N∑
n=1

||K ′
n −Kn||1, (12)

where K ′
n and Kn are the n-th keypoint generated by our MappingNet and the motion generator of the original face-vid2vid,

respectively. The weight of L1 is set to 20, and the weights of the other loss functions keep the same as in face-vid2vid and
they are calculated on the final generated image. Please refer to face-vid2vid [12] for more details.

B.4. More Details about the Alignment Coefficients

In the main paper, we show the effect of the alignment coefficients in Fig 9. Here, we give more details about the alignment
coefficients. Generally, the alignment coefficients are the transformation parameters (translation and scaling) to transform and
crop the arbitrary video to the aligned face video for deep 3D face reconstruction [1]. The implicit modulation of PIRenderer [8]
contains 73 dimensional motion coefficients, including the expression (64), head pose (6) and the alignment coefficients (3).
Since their method focuses on video driving animation, the alignment coefficients are known in testing. However, it is hard
to learn from the audio since there is no relationship between the alignment and the audio. We also try to learn and use the
alignment coefficients of the first frame in our method (as shown in Fig. 9 and the supp. video), however, the produced head
motion is aligned and unnatural. We discard it to obtain more natural video results. Thus, our motion coefficients (70) only
contains the expression (64) and head pose (6).

B.5. Generating Long sequence in PoseVAE

We predict the residual of the 32 continuous head pose coefficients [∆ρ1, ..,∆ρ32] from 32-frame audio features [a1, .., a32],
the reference head pose ρ0 and the style code Zstyle, generating the head pose coeffs [ρ1, .., ρ32] = [∆ρ1, ..,∆ρ32] + ρ0. To
generate longer sequence, e.g., [ρ33, ..., ρ64], we still use ρ0 as the reference to guarantee the stability of generated pose
sequence.

C. Supplementary Video
We provide a supplementary video to include all the video results of our method and other related methods as comparisons,

the ablation study of each component, and more results of our method in different languages. Please refer to https:
//sadtalker.github.io for the supplementary video.
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