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1. Extended Details of Related Work
Semi-Supervised Object Detection. In SSOD,

Pseudo Labeling [17] and Consistency-based Regulariza-
tion [6], [12] are two commonly used methods. As an
early SSOD work, STAC [14] proposed a basic multi-stage
training framework to combine pseudo labeling and con-
sistency training. To simplify the multi-stage training pro-
cess, the end-to-end Teacher-Student framework [15], [10]
is proposed, in which the teacher model is updated by ex-
ponential moving average (EMA) from the student model,
and generates pseudo labels on the unlabeled images in
an online manner. Under this framework, a significant
amount of research is proposed to improve the quality of
pseudo labels [10, 18, 20, 25]. Among them, Unbiased
Teacher [10] replaces the Cross-Entropy loss with Focal
Loss to eliminate the class imbalance caused by confirma-
tion bias [1] of pseudo labels. For Consistency-based regu-
larization methods [5, 9], PseCo [9] introduces the feature-
level scale consistency by aligning shifted pyramid features
of different scale inputs of the same image. Most of these
works are based on the two-stage detectors, e.g. Faster
RCNN [13], which involves the anchor generator, a com-
plex hand-crafted component. On the other hand, some
SSOD methods focus on the one-stage detectors [3, 11, 24].
Among them, DSL [3] proposed the first dense learning-
based anchor-free SSOD method with adaptive filtering
strategy and uncertainty regularization and achieved state-
of-the-art performance. Dense Teacher [24] is proposed to
use the dense output predictions from the teacher branch as
pseudo labels directly to avoid the annoying threshold selec-
tion. Our Semi-DETR is significantly different from previ-
ous works: (1) we explored the challenges of the DETR-
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based object detectors on SSOD, which, to our best knowl-
edge, is the first systematic research endeavor in SSOD; (2)
our Semi-DETR method is tailored for the DETR-based de-
tectors, which eliminates the training efficiency caused by
bipartite matching with the noisy pseudo labels and presents
a new consistency scheme for set-based detectors.

2. Extended Details of Stage-wise Hybrid
Matching

Design Details. In Stage-wise Hybrid Matching, we
propose to divide the training process into two stages: the
one-to-many assignment training in the first stage and the
one-to-one assignment training in the second stage. Fol-
lowing the main paper, let us denote the classification score
as s and an IoU between the predicted bounding box and
the ground truth bounding box as u. We take a high-order
combination of the classification score and the IoU as the
matching score and its negative version as the matching cost
in the first stage:

m = sα · uβ (1)

Cmatch(ŷ
t
i , ŷ

s
j ) = −mij = sαij · u

β
ij (2)

where ŷt and ŷs are the pseudo labels generated by the
teacher and the prediction of the student, respectively. The
sij is the classification score of j-th bounding box predic-
tion to i-th ground truth label, and uij is the IoU between
the j-th predicted bounding box and the i-th ground truth
box. The higher the matching score, the better the match-
ing quality between the predicted bounding box and the
ground truth box, and the lower the matching cost between
them. Then, we assigned multiple positive proposals to each
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pseudo box according to the matching score as follows:

σ̂o2m =

argmin
σi∈CM

N

M∑
j=1

Cmatch
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s
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)
|ŷt|

i=1

. (3)

where |ŷt| is the number of the pseudo labels. CM
N is the

combination of M and N , which denotes that a subset of
M proposals is assigned to the pseudo box ŷti , and the σi(j)
is the corresponding positive proposal indices. With this
assignment strategy, the number of assigned positive pro-
posals for each pseudo label significantly increases, boost-
ing the probability of containing the proposals with higher
quality as positive samples and leading to more efficient
training. In the implementation, we simply choose the Top-
K (K=M) proposals with the largest matching scores for
each pseudo box as the positive proposals.

After the first stage of training, the model is capable to
produce high-quality pseudo labels with NMS as the post-
process. To enjoy the merit of NMS-free detection with-
out sacrificing the detection performance, we propose to
conduct one-to-one assignment training with both the la-
beled data and unlabeled data in the second stage, where
the NMS post-process is applied to the unlabeled data to
provide high-quality pseudo boxes. The one-to-one assign-
ment, along with the high-quality pseudo boxes, helps the
model to gradually reduce the duplicated predictions and
finally evolve into an NMS-free end-to-end detector with
better performance.

Statistical Analysis. To validate the effectiveness of
our method, we first get the positive candidate proposals
obtained by one-to-one assignment using pseudo bound-
ing boxes and the positive candidate proposals obtained by
one-to-one assignment using corresponding ground-truth
bounding boxes, respectively:

bo2oi = Ao2o(b
pd
i )

b̂o2oi = Ao2o(b
gt
i )

(4)

where bpdi and bgti is the i-th pseudo box and its correspond-
ing ground-truth box. Ao2o means the one-to-one assign-
ment, i.e. bipartite matching, and the bo2oi and b̂o2oi are the
corresponding assigned positive proposals. We then calcu-
late the IoU between these two assigned positive proposals:

I1i = IoU(bo2oi , b̂o2oi ) (5)

The IoU value I1i represents the quality of the assigned can-
didate proposal. The larger the IoU, the closer the assigned
positive candidates are to the target object and the better the
quality. As a comparison, we get the assigned positive pro-
posals by one-to-many assignment for the i-th pseudo box:

bo2mi = {bo2mi1 , bo2mi2 , ..., bo2mim } = Ao2m(bpdi ) (6)

where Ao2m is our one-to-many assignment strategy, bo2mi

is the multiple assigned positive proposals for i-th pseudo
box. To verify whether there are positive proposals with
higher quality contained in the proposal set obtained by the
one-to-many assignment strategy, we calculate the max IoU
of these multiple positive proposals and the positive pro-
posal b̂o2oi :

I2i = Max({IoU(bo2mi1 , b̂o2oi ), ..., IoU(bo2mim , b̂o2oi )}) (7)

Then, we compare the IoUs I1i and I2i , and the results are
shown in Fig. 1. It can be found that the multiple positive
proposals obtained by our one-to-many assignment strat-
egy clearly contain proposals with higher quality than the
proposal obtained by the one-to-one assignment strategy.
This result demonstrates that a number of proposals with
poor quality are assigned as positive samples due to inac-
curate pseudo boxes in the one-to-one assignment, while
the correct positive candidate proposals with higher qual-
ity are forcibly assigned as negative samples, which finally
causes inefficient training. Our proposed Stage-wise Hy-
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Figure 1. The investigation of the quality of the assigned positive
proposals obtained by the one-to-one assignment and one-to-many
assignment.

brid Matching applies the one-to-many assignment strategy
in the first stage, which enables the proposals with higher
quality mistakenly assigned as background to have the op-
portunity to be optimized. With the modified loss function,
the potential positive proposals can be utilized to guide the
model convergence while the impact of the proposals with
low quality can also be eliminated at the same time.

Effectiveness Analysis. As presented in Fig. 4, com-
pared with the one-to-one assignment with Bipartite Match-
ing [2], the proposed Stage-wise Hybrid Matching greatly



improves the training efficiency of the first stage thanks
to the multiple assigned positive proposals. More impor-
tantly, the performance improvement becomes more promi-
nent when the number of labeled data gets more scarce, e.g.,
1%, which demonstrates the superiority of our method.

Furthermore, we compare different alternative one-to-
many assignment strategies in our method. Specifically, we
replace the one-to-many assignment strategy used in our
method with the Max-IoU [13], ATSS [23], and SimOTA
[4], respectively. We conduct these experiments with Semi-
DETR with DINO [22], and all the models are trained for
60K iterations. The results are shown in Tab. 1. Interest-
ingly, although designed to assign multiple positive pro-
posals, both Max-IoU and ATSS do not perform well in
DETR-based detectors. We visualize the assignment results
of these assignment strategies in Fig. 3. When applying the
Max-IoU assignment strategy, we observe that only a few
ground truth boxes own lots of duplicated positive propos-
als, and most ground truth boxes have no positive assigned
proposals. We suspect the main reason is that the learnable
object queries are unable to always guarantee enough IoU
with each ground truth box, and constantly changed during
the training. Unlike the fixed anchor box prior, the predicted
proposals of the object queries easily cluster around a par-
ticular ground truth box, and finally leads to duplicated pos-
itive proposals, which is not helpful for the training. How-
ever, further discussion is beyond this paper. As a compari-
son, the ATSS assignment strategy generates a few positive
proposals for each ground truth box. However, the num-
ber of positive proposals obtained by the ATSS for each
ground truth box is still limited. This is because the ATSS
only considers the IoU during the assignment, and the adap-
tive IoU thresholds obtained by the ATSS are so high that
most of the possible high-quality proposals are filtered out.
Different from the Max-IoU and ATSS, both SimOTA [4]
and our proposed method achieve much better performance,
which benefits from (1) the ranking-based one-to-many as-
signment strategy via the top-K operation to ensure enough
positive proposals for each ground truth box, and (2) the
ranking criteria considering both the classification score and
IoU score, which can generate various positive proposals as
shown in 3.

Table 1. Performance comparisons among different one-to-many
assignment strategies. Baseline means the one-to-one assignment
with bipartite matching. All the models are trained for 60K itera-
tions.

Method mAP AP50 AP75

Baseline 40.2 56.5 43.4
Max-Iou 11.4 15.0 12.1

ATSS 18.7 30.5 18.9
SimOTA 42.5 59.9 45.2

Ours 42.8 59.8 46.0

3. Extended Details of Cross-view Query Con-
sistency
We conduct experiments to validate the effectiveness

of our cross-view query consistency. We aim to answer the
following two questions:

1. Whether the cross-view queries necessary? Can we re-
place the cross-view queries with single-view queries?

2. Whether the RoI features in the cross-view queries re-
ally matter? What about conducting consistency train-
ing without incorporating these features into the con-
sistency queries?

To answer these two questions, we conduct two experiments
as follows:

Exp-1: We construct the consistency queries by the
RoI features within each view separately. And then, we
perform the query decoding in the teacher and student mod-
els individually. Finally, we impose the consistency con-
straint on the consistency queries decoding embedding of
the teacher and student models. The overview is pre-
sented in Fig. 5(b). As shown in Tab. 2, compared with
our proposed cross-view query consistency, when replacing
the cross-view queries with single-view queries, the perfor-
mance shows a 0.5 mAP drop. It confirms the importance of
the cross-view queries in our consistency scheme. The pos-
sible reason for the effectiveness of these cross-view queries
is that these queries provide information about the object
from another view, which encourages learning the semantic
invariance during decoding and leads to better performance.

Exp-2: As shown in Fig. 5(c), we construct the consis-
tency queries directly based on the positional embedding of
the pseudo boxes without the RoI features of corresponding
pseudo boxes. The difference between this scheme and DN-
DETR [8] is that we do not add the noise into the pseudo
boxes before obtaining the positional embedding. The re-
sults are presented in Tab. 2. After removing the RoI fea-
tures during the construction of the consistency queries, the
performance greatly decreased to 42.7(-0.8) mAP, which
demonstrates the necessity of the RoI features in consis-
tency queries. The reason for this performance degeneration
is that the positional embedding of the pseudo boxes does
not have strong priors to guarantee the correspondence be-
tween the consistency queries input and their corresponding
output prediction, which increases the learning difficulty of
the consistency training. As a comparison, we take the RoI
features from different views as the strong semantic guid-
ance during the decoding and ensure the final decoder em-
bedding is relevant to the input consistency queries, which
eventually leads to the success of the consistency training.



Table 2. Performance comparisons of different variants of Cross-
view Query Consistency

Method mAP AP50 AP75

Exp-1 43.0 59.3 46.3
Exp-2 42.7 58.9 46.0
Ours 43.5 59.7 46.8

4. Extended Details of the Cost-based Pseudo
Label Mining
Design Details. Concretely, we take two steps to gen-

erate the pseudo boxes for consistency training with a good
trade-off between precision and recall. First, for each unla-
beled image, we calculate the mean µ and variance σ of the
confidence scores of the detection results. Then, we take
the threshold τ1 = µ+ σ to filter and get the initial pseudo
boxes. For the second step, we perform the bipartite match-
ing with these initial pseudo boxes and the student model
predicted proposal boxes, and record the matching cost of
each pseudo box. We collect the matching cost of the initial
pseudo boxes within a batch and show the distribution of the
matching cost in Fig. 2. Obviously, the distribution of the
matching costs presents a bimodal distribution. To this end,
we propose to model the cost distribution with a Gaussian
Mixture Model(GMM) consisting of two Gaussian distribu-
tions as follows:

P (c|θ) = wrNr(c, µr, σr) + wuNu(c, µu, σu) (8)

where the P (c|θ) means the probability of matching
cost value c, θ is the parameters of the GMM model.
Nr(c, µr, pr) represents the cost distribution of reliable
pseudo boxes with lower matching cost and Nu(c, µu, pu)
represents the cost distribution of unreliable pseudo boxes
with higher matching cost. wr and wu represent the blend-
ing weights of these two distributions, µr(or µu), and σr(or
σu) represent the means and variances of these two distribu-
tions, respectively. The fitting process can be solved by the
Expectation-Maximization (EM) algorithm [19]. Then, we
set the threshold τc as the cost with the highest probability
of being the reliable pseudo boxes.

τc = argmax
c

Preliable(c|c, θ) (9)

The bounding boxes with matching costs less than τc are re-
garded as reliable pseudo boxes and are retained for cross-
view query consistency learning. As shown in Fig. 6,
this pseudo label mining method successfully mines more
pseudo bounding boxes which is reliable for consistency
training from the initial pseudo boxes.

Effectiveness Analysis. In our main paper, we take
the fixed classification confidence score τs = 0.4 to filter
and obtain the pseudo labels for the training of classification

and regression. The pseudo labels obtained by cost-based
pseudo label mining (CPM) are used for consistency train-
ing only. Here, we conduct experiments to test the extension
of the CPM to replace this fixed threshold filtering scheme.
According to Tab. 3, interestingly, when the pseudo labels
from the CPM are utilized to train the classification and
regression losses, the detector suffers a clear performance
drop (-1.1%). This indicates that these pseudo labels are not
suitable for the training of classification and regression. The
possible reasons for this performance drop are two-fold: (1)
our proposed Cross-view Query Consistency aims to learn
semantic feature invariance between different views from
unlabeled images, which essentially does not have a strict
requirement for the localization accuracy(i.e. high preci-
sion) of the pseudo bounding boxes. Meanwhile, the CPM
generates more pseudo bounding boxes(i.e. high recall)
than that of the fixed threshold filtering scheme, which es-
sentially facilitates the learning of cross-view query consis-
tency. (2) As discussed in the Stage-wise Hybrid Matching
part in the main paper, the one-to-one assignment strategy
used in DETR-based detectors requires more accurate(i.e.
high precision) pseudo labels to effectively supervise the
classification and regression learning, otherwise would lead
to inefficient training.

5. Data Augmentations
Generally, we follow the data augmentation scheme in

Soft-Teacher [18]. We summarize the data augmentations
used in our method in Tab. 5. Note that we do not use more
advanced data augmentations such as Large Scale Jittering
in [18, 24], MixUp [21], and Mosaic in [25], Patch Shuf-
fle in [3]. We believe these data augmentations can further
improve our performance, which we leave for future work.

Table 3. Experiments about usage extension of the pseudo labels
from Cost-baed Pseudo Label mining(CPM). Cls means classifi-
cation training and Reg means regression training. Consistency
represents the cross-view query consistency.

Method Cls + Reg Consistency mAP
CPM(Ours) ✓ 43.5

CPM(Extension) ✓ ✓ 42.4

6. Extended Details of Experiments
Here, we provide more details about the experi-

ments with Deformable DETR [26], i.e. Semi-DETR(Def-
DETR). (1) For the COCO Partial benchmark, we train
Semi-DETR(Def-DETR) for 180k iterations and the train-
ing time of first stage with one-to-many assignment T1 is
set to 120k iterations. Other settings are kept the same
with Semi-DETR(DINO). (2) For the COCO-Full bench-
mark, the total training time is set to 240k iterations, and T1



is set to 180k iterations. Other settings are kept the same
with Semi-DETR(DINO). (3) For the Pascal VOC bench-
mark, we train Semi-DETR(Def-DETR) for 120k iterations
with the training time of first stage T1 set to 80k iterations.
Other settings are kept the same with COCO-Partial bench-
mark. For all experiments, the confidence threshold is set
to 0.4. We utilize Adam [7] with a learning rate of 2e-
4 and weight decay of 0.0001, and no learning rate decay
scheme is used. The teacher model is updated from the stu-
dent model through EMA with a momentum of 0.999.

Comparisons to Omni-DETR. Omni-DETR [16] is a
DETR-based object detector designed for omni-supervised
object detection. It is not designed specifically for SSOD as
admitted in their paper, but it is extended to the SSOD task
by introducing a simple pseudo-label filtering scheme. Our
Semi-DETR is significantly different from Omni-DETR in
the following aspects:

(1) Different motivations for model design. To per-
form SSOD, Omni-DETR adopted simple hard threshold-
ing on the confidence scores of the predictions to assign
supervised pseudo-labels to unlabeled data, which can be
viewed as a simple integration of DETR-based detectors to
the general SSOD framework. We conducted an in-depth
analysis of this pipeline and identified that the one-to-one
assignment strategy leads to training inefficiency due to in-
accurate pseudo labels, especially during the early train-
ing phase. Besides, the lack of deterministic correspon-
dence between the input query and its prediction output
in DETR-based detection framework also hinders the inte-
gration of consistency-based regularization which is known
to be effective in existing SSOD methods. Consistency-
based regularization is therefore not explored in Omni-
DETR. Our proposed Semi-DETR alleviates the training
inefficiency by combining the one-to-many and one-to-one
assignment strategies to provide pseudo-labels of higher
quality. Moreover, it introduces a consistency-based reg-
ularization scheme powered by a cost-based pseudo label
mining method, which enables consistency regularization
for DETR-based detectors. In general, compared to Omni-
DETR, Semi-DETR is a tailored design for SSOD, and it
is an important step forward to extend the study of DETR-
based detectors to SSOD.

(2) Different training strategy. Omni-DETR fol-
lows the complex multi-stage training pipeline of Unbiased-
Teacher [10], which requires an extra burn-in stage to pre-
train on labeled data and thus is not essentially end-to-end.
However, Semi-DETR shares the same design philosophy
as Soft-Teacher [18] without the need to pre-train with la-
beled data in advance. Both detectors embrace the benefits
of NMS-free post-process, but our proposed Semi-DETR
achieves end-to-end detection in both the training and in-
ference phases. This strengthens our claim that Semi-
DETR is the first transformer-based end-to-end semi-

supervised object detector.
(3) Significant performance improvement. As dis-

cussed in [16], Omni-DETR utilizes Deformable DETR as
the base detector for faster convergence. We compare our
Semi-DETR with Omini-DETR using the same baseline de-
tectors under different COCO-Partial settings as in Tab. 4.
Clearly, Semi-DETR achieves SOTA performance with dif-
ferent detectors, and it is superior to Omni-DETR across all
base detectors under different experimental settings.

We present fair comparisons between Omni-DETR
and Semi-DETR using different base detectors (i.e., De-
formable DETR and DINO) in Tab. 4. First we must clar-
ify that Omni-DETR actually adopts Deformable DETR
as the base detector due to the slow convergence of orig-
inal DETR. The performance of Omni-DETR with De-
formable DETR is thus directly copied from [16], and we
additionally evaluate its performance with DINO. As shown
in Tab. 4, Semi-DETR consistently achieves better perfor-
mance than Omni-DETR across all settings. Moreover,
even armed with DINO as the base detector, our Semi-
DETR still outperforms Omni-DETR by clear margins,
which manifests the superiority of our Semi-DETR in terms
of performance compared to Omni-DETR.

Table 4. Performance comparisons between Omni-DETR and
Semi-DETR with different detectors under COCO-Partial settings.

Method 1% 5% 10%
Omni-DETR(Def-DETR) 18.60 30.20 34.10
Semi-DETR(Def-DETR) 25.20 34.50 38.10

Improvement +6.60 +4.30 +4.00
Omni-DETR(DINO) 27.60 37.70 41.30
Semi-DETR(DINO) 30.50 40.10 43.50

Improvement +2.90 +2.40 +2.20

7. More Visualization
Stage-wise Hybrid Matching improves the training ef-

ficiency when the pseudo labels are inaccurate by the one-
to-many assignment, and makes it able to generate the
pseudo labels with higher quality in the second stage. To
validate this, we visualize the pseudo labels training with
and without the State-wise Hybrid Matching. The results
are shown in Fig. 7. It clearly shows that our Stage-wise
Hybrid Matching generates better pseudo boxes.

8. Discussion of Limitations
Achieving an end-to-end detection framework without

NMS post-processing under DETR-based semi-supervised
object detection, while maintaining the performance of a
fully one-to-many assignment strategy is a research direc-
tion worth exploring. Semi-DETR has demonstrated the ef-



fectiveness of combining the one-to-many assignment and
the one-to-one assignment strategies at the cost of a perfor-
mance drop compared to the fully one-to-many assignment
strategy. Nevertheless, how to design a better DETR-based
SSOD framework that could minimize this performance gap
remains an open problem in the research community. We
leave it to future work.
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Table 5. Data augmentations used in our method. p represents the probability of choosing a certain type of augmentation.

Augmentation Labeled image training Unlabeled image training Pseudo-label generation
Scale Jitter shortest edge ∈ [480, 800] shortest edge ∈ [480, 800] shortest edge ∈ [480, 800]

Solarize Jitter p=0.25,ratio∈(0,1) p=0.25,ratio∈(0,1) -
Brightness p=0.25,ratio∈(0,1) p=0.25,ratio∈(0,1) -

Constrast Jitter p=0.25, ratio ∈(0,1) p=0.25, ratio ∈(0,1) -
Sharpness Jitter p=0.25, ratio ∈(0,1) p=0.25, ratio ∈(0,1) -

Translation - p=0.3, translation ratio∈(0,1) -
Rotate - p=0.3,angle∈(0,30◦) -
Shift - p=0.3,angle∈(0,30◦) -

Cutout num∈(1,5),ratio∈(0.05,0.2) num∈(1,5),ratio∈(0.05,0.2) -

4 2 0 2 4
Matching Cost

0

1

2

3

4

5

6

P
se

ud
o 

B
ox

 N
um

4 2 0 2 4
Matching Cost

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

P
se

ud
o 

B
ox

 N
um

4 2 0 2 4
Matching Cost

0

1

2

3

4

5

6

P
se

ud
o 

B
ox

 N
um

4 2 0 2 4
Matching Cost

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

P
se

ud
o 

B
ox

 N
um

Figure 2. The distribution of the matching cost of the initial pseudo boxes within a random batch.



(a) (b) (c) (d)

Figure 3. Qualitative results of assigned positive proposals of different one-to-many assignment strategies. (a) Max-IoU(IoU Threshold
0.5) (b) ATSS (c) SimOTA (d) Ours. Compared to Max-IoU, ATSS, and SimOTA, our method obtains more positive proposals for each
ground truth bounding box. Note that the ground truth bounding boxes are in red, and the assigned positive predicted bounding boxes are
in green.

Stage-1 Stage-2 Stage-1 Stage-2 Stage-1 Stage-2

1% 5% 10%

(a) (b) (c)

Figure 4. The training efficiency comparisons between the proposed State-wise Hybrid Matching(one-to-many assignment in stage-1 and
one-to-one assignment in stage-2) and the original Bipartite Matching(one-to-one assignment) under different labeled data ratios on the
COCO dataset. The area in orange and green represent the first stage and second stage in the Stage-wise Hybrid Matching, respectively.
Our Stage-wise Hybrid Matching greatly improves the training efficiency, especially when labeled data are scarce.
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Figure 5. Overview of different variants of the cross-view query consistency. (a) our proposed cross-view query consistency, (b) consistency
scheme in Exp-1 which replaces the cross-view consistency queries with single-view consistency queries, and (c) consistency scheme in
Exp-2, which directly takes the positional embedding of pseudo boxes as the consistency queries.



Figure 6. The pseudo boxes before and after the cost-based pseudo label mining. Left: the initial pseudo boxes obtained with threshold τ1,
Right: the pseudo boxes after the cost-based pseudo label mining with GMM. Note that we applied strong augmentations on the unlabeled
images and visualized the predictions accordingly.



(a) (b)

Figure 7. Qualitative comparisons between the pseudo labels generated by (a) training without Stage-wise Hybrid Matching and (b) training
with Stage-wise Hybrid Matching. The pseudo label threshold τs = 0.4.
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