— Supplementary Material —
Skinned Motion Retargeting with
Residual Perception of Motion Semantics & Geometry

A. Supplementary on Experiments

To evaluate the body-shape sensitivity of our proposed shape-aware module, we test two different shape parameters input
to check the output visualization. The source shape parameters ¢,,. and the target shape parameters ¢, are fed into the
shape-aware module respectively. As shown in Figure 1, there is a large head-shape difference between the source and target
characters. When the shape parameters ¢, are fed into the shape-aware module, the result has an obvious interpenetration
artifact. When the shape parameter input of the shape-aware module is ¢4¢, our R?ET can accurately perceive the shape of
the target character’s head and effectively avoid interpenetration.
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Figure 1. Poses adjusted by our shape-aware module with different shape parameters as input.

The Mixamo dataset does not provide perfect Ground Truth: many of the motion sequences may have interpenetration
or contact-missing issues. Thus, our R2ET will cause an increase in the MSE of the joint positions while alleviating the

interpenetration problem. Figure 2 shows the curves of MSE and penetration rate of our results as the change of the balancing
weight w.



Table 1. Experiment results on the unseen motion.

UC+UM UC +SM SC + UM
MSE, Pen.' MSE, Pen.' MSE, Pen.[

Copy 0230 403 0139 585 0394 1225
NKN[5] 0777 339 1329 676 2273 1171
R2ET 0241 251 0.165 357 0401 775

Method

Table 2. Detailed architectures of the shape-aware mod-
ule AF, and the balancing gate F,,. The keep proba-

bility of the Dropout layers is set as 0.8. 0.320 0318 9.50
0315 909 0315 9.00
Name | Layer  Channels Activation ' ' 850 3
- 0.309, -
Linear 154 — 256 ReLU 0310 8.00 g
Dropout - - % 0305 7.90 0.304 750 §
AF, | Linear 256256  ReLU =" 700 8
Q
Dropout - - " 0300 0298 6.86 650 £
QLinear 256 — 88 - 0.296 6.42 6.00 2
- 0.295 6.14 sox B
Linear 220 — 512 ReLU : 5.50
Dropout - - 0.290 5.00
Fuw Linear 512 — 512 ReLU 0.0 02 04w 0.8 1.0
Dropout - -
Linear 512 — 256 RelLU Figure 2. The curves of MSE and penetration rate of our results as the change
Dropout - - of balancing weight w.
Linear 256 — 22 Sigmoid

We have unseen character (UC), unseen motion (UM), seen character (SC), and seen motion (SM) so that four splits
UC+UM, UC+SM, SC+UM, SC+SM are considered in the experiment. Around 3/4 of the test samples are unseen. As Table
1 shows, R?ET beats the Copy and NKN on three unseen cases, which demonstrates the strong generalizability of our R2ET.

Figure 3 and Figure 4 are two examples that applying our R?ET for retargeting from video motion capture data. The two
videos in the examples are from YouTube' > and the SMPL model is estimated by [4]. The results demonstrate that our R2ET
works well on video motion capture data, which maintain the motion semantics while avoiding interpenetration.

B. Demo Video

For the demo video, please refer to https://semanticdh.github.io/R2ET/. All of the results are rendered by
the Blender [1].

C. Architecture and Implementation Details

The architectures of the shape-aware module AF, and the balancing gate F,, are detailed in Table 2. “QLinear” is a
Linear Layer that outputs quaternions, and its bias is initialized as a unit quaternion.

We implement our R?ET based on the PyTorch deep learning framework [3]. We apply the Adam optimizer [2] to train
the network. We use a single NVIDIA Tesla V100 GPU (16GB) and the training process is divided into two stages. To train
the skeleton-aware module, the learning rate is set as 0.001, the number of training epochs is set as 30 and the batch size is
32. To train the shape-aware module and the balancing gate, the learning rate is set as 0.0001, the number of training epochs
is set as 50 and the batch size is 16. In the second stage, we set the balancing gate w to 1 with a probability of 0.3, which
ensures a stable learning process of the shape-aware module.

Each animation character used in our experiments consists of 22 joints. We observe that 22 joints are enough to visually
present the motion in the Mixamo datasets, and we keep this parameter the same across all the characters. The joints we

"https://www.youtube.com/watch?v=_eubpS_MDe4
Zhttps://www.youtube.com/watch?v=KOmhNgW-mTo&t=84s


https://semanticdh.github.io/R2ET/
https://www.youtube.com/watch?v=_eubpS_MDe4
https://www.youtube.com/watch?v=K0mhNqW-mTo&t=84s

used include Hips, Spine, Spinel, Spine2, Neck, Head, LeftUpLeg, LeftLeg, LeftFoot, LeftToeBase, RightUpLeg, RightLeg,
RightFoot, RightToeBase, LeftShoulder, LeftArm, LeftForeArm, LeftHand, RightShoulder, RightArm, RightForeArm, and
RightHand. The seven characters in our training set are AJ, BigVegas, GoblinDShareyko, Kaya, Mousey, PeasantMan, and
WarrokWKurniawan. The 11 characters in our testing set are AJ, BigVegas, Kaya, PeasantMan, Mousey, WarrokWKurni-
awan, Mutant, Ortiz, CastleGuard, and SportyGranny.

The voxelizing process of RDF and ADF: First, we rescale the deformed mesh into a tight box such that the vertice
coordinates are ranged in [—1, 1]. Then, we uniformly sample 32 points in this box and calculate the distance from each point
to the surface as the value of a voxel. Finally, for the RDF, we set the values of the voxels outside the mesh to 0. For the
ADF, if a voxel is inside the mesh or its value is larger than 0.2, we set its value to 0.

D. User Study Details

We invite 100 users to fill out our user study questionnaire. After that, we exclude the questionnaires whose verification
questions are incorrectly answered, or are completed in less than 10 minutes. In the end, 80 questionnaires are retained,
which contained 3120 ranking comparison results.

14541

35 /l__L_

—“_———

Figure 3. Motion retargeting from video motion capture data. We retarget motion estimated by [4] from a wild video into different
characters.



Figure 4. Motion retargeting from video motion capture data.
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