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A. Supplementary on Experiments
To evaluate the body-shape sensitivity of our proposed shape-aware module, we test two different shape parameters input

to check the output visualization. The source shape parameters ϕsrc and the target shape parameters ϕtgt are fed into the
shape-aware module respectively. As shown in Figure 1, there is a large head-shape difference between the source and target
characters. When the shape parameters ϕsrc are fed into the shape-aware module, the result has an obvious interpenetration
artifact. When the shape parameter input of the shape-aware module is ϕtgt, our R2ET can accurately perceive the shape of
the target character’s head and effectively avoid interpenetration.
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Figure 1. Poses adjusted by our shape-aware module with different shape parameters as input.

The Mixamo dataset does not provide perfect Ground Truth: many of the motion sequences may have interpenetration
or contact-missing issues. Thus, our R2ET will cause an increase in the MSE of the joint positions while alleviating the
interpenetration problem. Figure 2 shows the curves of MSE and penetration rate of our results as the change of the balancing
weight w.



Table 1. Experiment results on the unseen motion.

Method UC + UM UC + SM SC + UM

MSE↓ Pen.%↓ MSE↓ Pen.%↓ MSE↓ Pen.%↓
Copy 0.230 4.03 0.139 5.85 0.394 12.25
NKN [5] 0.777 3.39 1.329 6.76 2.273 11.71
R2ET 0.241 2.51 0.165 3.57 0.401 7.75

Table 2. Detailed architectures of the shape-aware mod-
ule ∆Fg and the balancing gate Fw. The keep proba-
bility of the Dropout layers is set as 0.8.

Name Layer Channels Activation

∆Fg

Linear 154 → 256 ReLU
Dropout - -
Linear 256 → 256 ReLU

Dropout - -
QLinear 256 → 88 -

Fw

Linear 220 → 512 ReLU
Dropout - -
Linear 512 → 512 ReLU

Dropout - -
Linear 512 → 256 ReLU

Dropout - -
Linear 256 → 22 Sigmoid
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Figure 2. The curves of MSE and penetration rate of our results as the change
of balancing weight w.

We have unseen character (UC), unseen motion (UM), seen character (SC), and seen motion (SM) so that four splits
UC+UM, UC+SM, SC+UM, SC+SM are considered in the experiment. Around 3/4 of the test samples are unseen. As Table
1 shows, R2ET beats the Copy and NKN on three unseen cases, which demonstrates the strong generalizability of our R2ET.

Figure 3 and Figure 4 are two examples that applying our R2ET for retargeting from video motion capture data. The two
videos in the examples are from YouTube1 2 and the SMPL model is estimated by [4]. The results demonstrate that our R2ET
works well on video motion capture data, which maintain the motion semantics while avoiding interpenetration.

B. Demo Video
For the demo video, please refer to https://semanticdh.github.io/R2ET/. All of the results are rendered by

the Blender [1].

C. Architecture and Implementation Details
The architectures of the shape-aware module ∆Fg and the balancing gate Fw are detailed in Table 2. “QLinear” is a

Linear Layer that outputs quaternions, and its bias is initialized as a unit quaternion.
We implement our R2ET based on the PyTorch deep learning framework [3]. We apply the Adam optimizer [2] to train

the network. We use a single NVIDIA Tesla V100 GPU (16GB) and the training process is divided into two stages. To train
the skeleton-aware module, the learning rate is set as 0.001, the number of training epochs is set as 30 and the batch size is
32. To train the shape-aware module and the balancing gate, the learning rate is set as 0.0001, the number of training epochs
is set as 50 and the batch size is 16. In the second stage, we set the balancing gate w to 1 with a probability of 0.3, which
ensures a stable learning process of the shape-aware module.

Each animation character used in our experiments consists of 22 joints. We observe that 22 joints are enough to visually
present the motion in the Mixamo datasets, and we keep this parameter the same across all the characters. The joints we

1https://www.youtube.com/watch?v=_eubpS_MDe4
2https://www.youtube.com/watch?v=K0mhNqW-mTo&t=84s

https://semanticdh.github.io/R2ET/
https://www.youtube.com/watch?v=_eubpS_MDe4
https://www.youtube.com/watch?v=K0mhNqW-mTo&t=84s


used include Hips, Spine, Spine1, Spine2, Neck, Head, LeftUpLeg, LeftLeg, LeftFoot, LeftToeBase, RightUpLeg, RightLeg,
RightFoot, RightToeBase, LeftShoulder, LeftArm, LeftForeArm, LeftHand, RightShoulder, RightArm, RightForeArm, and
RightHand. The seven characters in our training set are AJ, BigVegas, GoblinDShareyko, Kaya, Mousey, PeasantMan, and
WarrokWKurniawan. The 11 characters in our testing set are AJ, BigVegas, Kaya, PeasantMan, Mousey, WarrokWKurni-
awan, Mutant, Ortiz, CastleGuard, and SportyGranny.

The voxelizing process of RDF and ADF: First, we rescale the deformed mesh into a tight box such that the vertice
coordinates are ranged in [−1, 1]. Then, we uniformly sample 32 points in this box and calculate the distance from each point
to the surface as the value of a voxel. Finally, for the RDF, we set the values of the voxels outside the mesh to 0. For the
ADF, if a voxel is inside the mesh or its value is larger than 0.2, we set its value to 0.

D. User Study Details
We invite 100 users to fill out our user study questionnaire. After that, we exclude the questionnaires whose verification

questions are incorrectly answered, or are completed in less than 10 minutes. In the end, 80 questionnaires are retained,
which contained 3120 ranking comparison results.
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Figure 3. Motion retargeting from video motion capture data. We retarget motion estimated by [4] from a wild video into different
characters.
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Figure 4. Motion retargeting from video motion capture data.
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