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1. Discussion
1.1. Why Do Trigonometric Functions Work?

We leverage the trigonometric function to conduct non-
parametric raw-point embedding and geometry extraction.
It can reveal the 3D spatial patterns benefited from the fol-
lowing three properties.

Capturing High-frequency 3D Structures. As dis-
cussed in Tancik et al. [45], transforming low-dimensional
input by sinusoidal mapping helps MLPs to learn the high-
frequency content during training. Similarly to our non-
parametric encoding, Point-NN utilizes trigonometric func-
tions to capture the high-frequency spatial structures of 3D
point clouds, and then recognize them from these distinc-
tive characteristics by the point-memory bank. In Figure 1,
we visualize the low-frequency (Top) and high-frequency
(Middle) geometry of the input point cloud, and compare
them with the feature responses of Point-NN (Bottom).
The high-frequency geometries denotes the spatial regions
of edges, corners, and other fine-grained details, where
the local 3D coordinates vary dramatically, while the low-
frequency structure normally includes some flat and smooth
object surfaces with gentle variations. As shown, aided by
trigonometric functions, our Point-NN can concentrate well
on these high-frequency 3D patterns.

Encoding Absolute and Relative Positions. Benefited
from the nature of sinusoid, the trigonometric functions
can not only represent the absolute position in the embed-
ding space, but also implicitly encode the relative posi-
tional information between two 3D points. For two points,
pi = (xi, yi, zi) and pj = (xj , yj , zj), we first obtain their
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C-dimensional embeddings referring to Equation (5∼7) in
the main paper, formulated as
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where PosE(·) denotes the positional encoding by trigono-
metric functions, and fx
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embeddings of three axes. Then, their spatial relative rela-
tion can be revealed by the dot production between the two
embeddings, formulated as
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Taking the x axis as an example,
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which indicates the relative x-axis distance of two points, in
a similar way to the other two axes. Therefore, the trigono-
metric function is capable of encoding both absolute and
relative 3D positional information for point cloud analysis.

Local Geometry Extraction. In Equation (9) of the main
paper, we weigh each neighbor feature fj within the local
region by the relative positional embedding, PosE(∆pj),
formulated as

fw
cj =

(
fcj + PosE(∆pj)

)
⊙ PosE(∆pj). (4)

The weighing is conducted sequentially by element-wise
addition and multiplication. Firstly, the addition is to com-
plement fcj with higher frequency information. Due to
feature expansion, the output dimensions of PosE(∆pj) of
4 stages are respectively 2CI , 4CI , 8CI , and 16CI . As
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Figure 1. Why Do Trigonometric Functions Work? For an input point cloud, we visualize its low-frequency and high-frequency
geometries referring to [57], and compare with the feature responses after the first network stage of Point-NN, where darker colors indicate
higher responses. As shown, Point-NN can focus on the high-frequency 3D structures with sharp variations of the point cloud.

Benchmark ScanObjectNN ModelNet40 ShapeNetPart

Point-PN 87.1 93.8 86.6
+NN +0.1 +0.2 +0.0

Table 1. Can Point-NN Improve Point-PN by Plug-and-play?
We report the accuracy (%) on the PB-T50-RS split of ScanOb-
jectNN [48], ModelNet40 [53], and ShapeNetPart [59].

the embedding frequency depends on feature dimension
referring to Equation (6) of the main paper, the embed-
dings at higher stages obtain higher frequencies. Taking the
first stage as an example, PosE(∆pj) is 2CI -dimensional,
but fcj is a concatenation of two CI -dimensional vec-
tors, which makes their embedding frequencies inconsis-
tent. Therefore, we adopt addition to endow fcj with the
frequency corresponding to 2CI dimension. Then, the
second-step multiplication weighs the magnitude of each
element in fcj by its relative positional information. This
determines the importance of different neighbor points in
the subsequent pooling operations, and the final aggregated
features of the local neighborhood. In this way, Point-NN
can effectively embed local 3D patterns via PosE(·) with-
out any learnable operators.

1.2. Can Point-NN Improve Point-PN?

Point-NN can provide complementary geometric knowl-
edge and serve as a plug-and-play module to boost existing
learnable 3D models. Although Point-PN is also a learnable
3D network, the enhanced performance brought by Point-
NN is marginal as reported in Table 1. By visualizing fea-
ture responses in Figure 2, we observe that the complemen-

Method Pre-train
in 2D

Pre-train
in 3D 3D Data Acc. (%)

PointCLIP [62] ✓ - - 20.2
CALIP [16] ✓ - - 21.5
CLIP2Point [22] ✓ ✓ ✓ 49.4
ULIP [58] ✓ ✓ ✓ 60.4
PointCLIP V2 [73] ✓ - - 64.2
Point-NN - - ✓ 81.8

Table 2. Comparison of Training-free Methods in 3D. We report
their performance without training on ModelNet40 [53].

tarity between Point-NN and Point-PN is much weaker than
that between Point-NN and PointNet++ [36]. This is be-
cause the non-parametric framework of Point-PN is mostly
inherited from Point-NN, also capturing high-frequency 3D
geometries via trigonometric functions. Therefore, the
learnable Point-PN extracts similar 3D patterns to Point-
NN, which harms its plug-and-play capacity.

1.3. Training-free Methods in 3D

Our Point-NN conducts no training, but requires 3D
training data to construct the point-memory bank. Inspired
by the transfer learning in 2D and language [2,10,12,27,60,
63, 68, 72], some recent works [16, 22, 58, 62, 73] adapt the
pre-trained models from other modalities, e.g., CLIP [39],
to 3D domains in a zero-shot manner. Via the diverse pre-
trained knowledge, they are also training-free and do not
need any 3D training data. As compared in Table 2, dif-
ferent from other methods based on 2D or 3D pre-training,
our method is a pure non-parametric network without any
learnable parameters or pre-trained knowledge.
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Figure 2. Can Point-NN Improve Point-PN by Plug-and-play? We visualize the feature responses after the first network stage for
Point-NN, the trained PointNet++ [36] and Point-PN, where darker colors indicate higher responses. As shown, Point-PN captures similar
3D patterns to Point-NN, which harms their complementarity.

k 1 10 100 500 1000 5000 All

Top-k PoM 80.4 81.1 81.3 81.4 81.4 81.7 81.8
k-NN 80.7 79.5 67.0 45.7 36.4 8.5 -

Table 3. Point-Memory Bank vs. k-NN. ‘Top-k PoM’ denotes
the point-memory bank with top-k similarities, and ‘All’ denotes
9,840 training samples. We utilize our non-parametric encoder to
extract features and report the accuracy (%) on ModelNet40 [53].

1.4. Point-Memory Bank vs. k-NN?

Based on the already extracted point cloud features,
our point-memory bank and k-NN algorithm both leverage
the inter-sample feature similarity for classification without
training, but are different from the following two aspects.

Soft Integration vs. Hard Assignment. As illustrated in
Section (2.3) of the main paper, our point-memory bank
regards the similarities Scos between the test point cloud
feature and the feature memory, Fmem, as weights, which
are adopted for weighted summation of the one-hot label
memory, Tmem. This can be viewed as a soft label inte-
gration. Instead, k-NN utilizes Scos to search the k nearest
neighbors from the training set, and directly outputs the cat-
egory label with the maximum number of samples within
the k neighbors. Hence, k-NN conducts a hard label as-
signment, which is less adaptive than the soft integration.
Additionally, our point-memory bank can be accomplished
simply by two matrix multiplications and requires no sort-
ing, which is more efficient for hardware implementation.

Baseline Method Gain (%) Param. Time

PAConv
PnP-3D +0.2 Acc. +0.7 M +14 h

Point-NN +0.2 Acc. +0 M +48 s

VoteNet
PnP-3D +1.4 AP25 +0.3 M +10 h

Point-NN +1.2 AP25 +0 M +9.3 min

Table 4. Point-NN vs. PnP-3D [38]. We adopt two baseline mod-
els for comparison, PAConv [56] and VoteNet [5], respectively on
ModelNet40 [53] and SUN RGB-D [43] datasets.

All Samples vs. k Neighbors. Our point-memory bank
integrates the entire label memory with different weights.
This can take the semantics of all training samples into ac-
count for classification. In contrast, k-NN only involves the
nearest k neighbors to the test sample, which discards the
sufficient category knowledge from other training samples.

Performance Comparison. In Table 3, based on the point
cloud features extracted by our non-parametric encoder,
we implement the top-k version of point-memory bank for
comparison with k-NN, which only aggregates the label
memory of the training samples with top-k similarities. As
the neighbor number k increases, k-NN’s performance is
severely harmed due to its hard label assignment, while our
point-memory bank attains the highest accuracy by utilizing
all 9,840 samples for classification, indicating their differ-
ent characters.



1.5. Point-NN vs. PnP-3D?

One previous work, PnP-3D [38], proposes local-global
3D processing modules that are plugged into other 3D mod-
els for performance improvement. Different from Point-
NN’s plug-and-play, PnP-3D introduces additional learn-
able parameters and requires to re-train the baseline net-
works from scratch, which is time-consuming. In contrast,
our Point-NN is non-parametric and enhances the baseline
directly during inference. In Table 4, we compare Point-
NN with PnP-3D respectively on PAConv [56] for shape
classification and VoteNet [5] for 3D object detection. As
shown, our method contributes to similar performance en-
hancement on the benchmarks, while brings no extra pa-
rameters or re-training. In the table, we report the additional
time for Point-NN to construct the point-memory bank be-
fore plug-and-play, which are 48 seconds and 9.3 minutes
for the two tasks.

2. Related Work
3D Point Cloud Analysis. As the main data form in 3D,
point clouds have stimulated a range of challenging tasks,
including shape classification [29,31,35–37,55], scene seg-
mentation [4, 25, 71], 3D object detection [5, 18, 21, 34, 42,
64], 3D vision-language learning [16, 52, 62, 73]. Exist-
ing solutions as backbone networks can be categorized into
projection-based and point-based methods. To handle the
irregularity and sparsity of point clouds, projection-based
methods convert them into grid-like data, such as tangent
planes [46], multi-view depth maps [13, 17, 44, 62, 73], and
3D voxels [30, 32, 41, 67]. By doing this, the efficient 2D
networks [19] and 3D convolutions [30] can be adopted
for robust point cloud understanding. However, the projec-
tion process inevitably causes geometric information loss
and quantization error. Point-based methods directly ex-
tract 3D patterns upon the unstructured input points to al-
leviate this loss of information. The seminal PointNet [35]
utilizes shared MLP layers to independently extract point
features and aggregate the global representation via a max
pooling. PointNet++ [36] further constructs a multi-stage
hierarchy to encode local spatial geometries progressively.
Since then, the follow-up methods introduce advanced yet
complicated local operators [31, 56] and global transform-
ers [1, 8, 9, 14, 15, 61, 66] for spatial geometry learning. In
this paper, we follow the paradigm of more popular point-
based methods, and propose a pure non-parametric net-
work, Point-NN, with its two promising applications. For
the first time, we verify the effectiveness of non-parametric
components for 3D point cloud analysis.

Local Geometry Operators. Referring to the inductive
bias of locality [19, 24], most existing 3D models adopt

delicate 3D operators to iteratively aggregate neighbor-
hood features. Following PointNet++ [36], a series of
methods utilize shared MLP layers with learnable rela-
tion modules for local pattern encoding, e.g., fully-linked
webs [69], structural relation network [7], and geometric
affine module [31]. Some methods define irregular spatial
kernels and introduce point-wise convolutions by relation
mapping [28], Monte Carlo estimation [20, 51], and dy-
namic kernel assembling [56]. Inspired by graph networks,
DGCNN [50] and others [26, 47] regard points as vertices
and interact local geometry through edges. Transform-
ers [25, 70] are also introduced in 3D for attention-based
feature communication. CurveNet [54] proposes generating
hypothetical curves for point grouping and feature aggrega-
tion. Unlike all previous methods with learnable operators,
Point-NN adopts non-parametric trigonometric functions to
reveal the spatial geometry within local regions, and Point-
PN further appends simple linear layers on top with high
performance-parameter trade-off.

Positional Encodings. Transformers [49] represent in-
put signals as an orderless sequence and implicitly uti-
lize positional encodings (PE) to inject positional infor-
mation. Typically, trigonometric functions are adopted as
the non-learnable PE [11] to encode both absolute and rel-
ative positions, each dimension corresponding to a sinu-
soid. For vision, PE can also be learnable during train-
ing [6] or online predicted by neural networks [3, 70]. An-
other work [40] indicates that deep networks can learn bet-
ter high-frequency variation given a higher dimensional in-
put. Tancik et al. [45] interpret it as Fourier transform to
learn high-frequency functions in low dimensional prob-
lems. NeRF [33] utilizes trigonometric PE to enhance the
MLPs for better neural scene representations, but in a dif-
ferent formulation from the Transformer’s. In contrast, we
extend the non-learnable trigonometric PE of Transformer
for specialized raw-point embedding and local geometry
extraction, other than serving as an accessory in previous
learnable networks. By doing this, the non-parametric en-
coder of Point-NN can effectively capture low-level spatial
patterns complementary to the already trained 3D models.

3. Implementation Details

Point-NN. The non-parametric encoder of Point-NN con-
tains 4 stages. Each stage reduces the point number by half
via FPS, and doubles the feature dimension during feature
expansion. For shape classification, the initial feature di-
mension CI is set to 72, and the final dimension CG of
global representation is 1,152. The neighbor number k of
k-NN is 90 for all stages. We set the two hyperparameters
α, β in PosE(·) as 1000 and 100, respectively, referring to
Equation (6) and (7) in the main paper. For part segmen-
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Figure 3. Point-Memory Bank for Part Segmentation. We first utilize the non-parametric encoder and decoder to extract the point-wise
features of the point cloud in the training set. Then, we average the point features with the same part label to obtain the part-wise features,
and construct them as the feature memory.

Grouping
Method

Acc.

Ball Query 78.5
k-NN 81.8

Feature
Expand

Acc.

w/o 70.0
w 81.8

Pooling Acc.

Max 80.4
Ave 77.1
Both 81.8

Table 5. Ablation Study of Non-Parametric Encoder. We ab-
late the grouping method for local neighbors, feature expansion
by concatenation, and pooling operation for feature aggregation.
We report the classification accuracy (%) on ModelNet40 [53].

tation, we extend the non-parametric encoder into 5 stages
for fully aggregating multi-scale 3D features. We set the
initial feature dimension CI as 144, and the neighbor num-
ber k as 128. We appended a non-parametric decoder with
skip connections in each stage, which concatenate the prop-
agated point features in the decoder with the corresponding
ones from the encoder. As shown in Figure 3, we construct
the segmentation point-memory bank by storing the part-
wise features and labels from the training set, which largely
saves the GPU memory. During inference, each point-wise
feature of the test point cloud conducts similarity matching
with the part-wise feature memory for segmentation.

Point-PN. For the parametric variant, we decrease CI to
36 and the neighbor number k to 40 for lightweight param-
eters and efficient inference. We adopt the bottleneck archi-
tecture with a ratio 0.5 for the two cascaded linear layers
after the Geometry Extraction step. The initial paramet-
ric raw-point embedding consists of only one linear layer,
and the final classifier contains three linear layers as ex-
isting methods [31, 37]. Specially, for the second 2-layer
linear layers, i.e., the ‘2’ of ‘1+2’, at the first stage of Point-
PN, we stack them twice for better extracting elementary
3D patterns at shallow layers. For shape classification, we
train Point-PN for 300 epochs with a batch size 32 on a sin-
gle RTX 3090 GPU. On ModelNet40 [53], we adopt SGD

Magnitude α 1 10 50 100 200 500

Acc. (%) 68.3 77.9 81.1 81.8 81.4 81.0

Table 6. Magnitude α in Trigonometric Functions. We report
the classification accuracy of Point-NN on ModelNet40 [53].

Wavelength β 10 100 500 1000 2000 3000

Acc. (%) 51.3 80.4 81.8 74.5 73.1 72.9

Table 7. Wavelength β in Trigonometric Functions. We report
the classification accuracy of Point-NN on ModelNet40 [53].

optimizer with a weight decay 0.0002, and cosine scheduler
with an initial learning rate 0.1. On ScanObjectNN [48],
we adopt AdamW optimizer [23] with a weight decay 0.05,
and cosine scheduler with an initial learning rate 0.002. We
follow the data augmentation in PointMLP [31] and Point-
NeXt [37] respectively for ModeNet40 and ScenObjectNN
datasets. For part segmentation, we simply utilize the same
learnbable decoder and training settings as CurveNet [54]
for a fair comparison.

Plug-and-play. For part segmentation and 3D object de-
tection, concurrently running an extra Point-NN to enhance
existing models would be expensive in both time and mem-
ory. Thus, referring to SN-Adapter [65], we directly adopt
the encoders of already trained models to extract point
cloud features, and only apply our point-memory bank on
top for plug-and-play. In this way, we can also achieve
performance improvement by leveraging the complemen-
tary knowledge between similarity matching and traditional
learnable classification heads.



Ratio (%) 1 5 10 20 40 80 100

Acc. (%) 39.5 64.2 70.3 75.0 77.9 80.8 81.8
Mem. (G) 3.84 3.87 3.93 4.05 4.26 4.82 5.21

Table 8. Point-Memory Bank with Different Sizes. We ran-
domly sample different ratios of ModelNet40 [53] to construct
the point-memory bank and report the classification accuracy with
GPU memory consumption.

4. Additional Ablation Study

Non-Parametric Encoder. In Table 5, we further in-
vestigate other designs at every stage of Point-NN’s non-
parametric encoder. As shown, k-NN performs better than
ball query [36] for grouping the neighbors of each center
point since the ball query would fail to aggregate valid ge-
ometry in some sparse regions with only a few neighboring
points. Expanding the feature dimension by concatenating
the center and neighboring points can improve the perfor-
mance by +5.3%. This is because each point obtains larger
receptive fields as the network stage goes deeper and re-
quires higher-dimensional vectors to encode more spatial
semantics. For the pooling operation after geometry extrac-
tion, we observe applying both max and average pooling
achieves the highest accuracy, which can summarize the lo-
cal patterns from two different aspects.

Hyperparameters in Trigonometric Functions. In Ta-
ble 6 and 7, we show the influence of two hyperparame-
ters in trigonometric functions of Point-NN. We fix one of
them to be the best-performing value (α as 100, β as 500),
and vary the other one for ablation. The combination of
the magnitude α and wavelength β control the frequency of
the channel-wise sinusoid, and thus determine the raw point
encoding for different classification accuracy.

Point-Memory Bank with Different Sizes. As default,
we construct the feature memory by the entire training-set
point clouds. In Table 8, we report how Point-NN performs
when partial training samples are utilized for the point-
memory bank. As shown, Point-NN can attain 60.1% clas-
sification accuracy with only 10% of the training data, and
further achieves 70.1% with 40% data, which is comparable
to the performance of 100% ratio but consumes less GPU
memory. This indicates Point-NN is not sensitive to the
memory bank size and can perform favorably with partial
training-set data.
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