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A. Technical Appendix

This section provides more details of our proposed method and its experimental results, which are omitted in
the main paper due to space limitation.

A.1. Training Objective of Iterative Multi-scale Feature Aggregation (IMFA)

As described in Section 4, all additional operations introduced by IMFA are fully differentiable, including the
selection of top-K prior detection predictions, sparse feature sampling via bilinear interpolation, adaptive scale
selection, Dynamic FFN, and iterative feature aggregation. Thus, the proposed IMFA can be trained end-to-end
on top of the corresponding baselines [2, 7, 10, 12].

Besides, IMFA requires no additional training objectives. In other words, IMFA is trained purely with the
supervision signals of the corresponding baselines’ detection-related losses.

A.2. Additional Experiment Results

Table 3 in our manuscript has already demonstrated that our proposed IMFA can work well with stronger vision
Transformer (ViT) backbones [8]. Here we present more results in Table 9. With Swin-Transformer-Tiny (Swin-
T) [8] as the backbone, DAB-DETR-Swin-T+IMFA significantly outperforms DAB-DETR-R50+IMFA with
comparable computational cost, which further demonstrates IMFA’s excellent scalability.

Method MS SMS #Epochs #Params FLOPs AP AP50 AP75 APS APM APL

DAB-DETR-R50 [7] + IMFA (Ours) ✓ 50 53M 108G 45.5 65.0 49.3 27.3 48.3 61.6

DAB-DETR-Swin-T [7] + IMFA (Ours) ✓ 50 57M 114G 47.0 67.1 50.6 29.5 49.7 63.3

Deformable-DETR-Swin-T [13] ✓ 50 40M 180G 45.7 65.3 49.9 26.9 49.4 61.2
YOLOS-DeiT-B [3] 150 127M 538G 42.0 62.2 44.5 19.5 45.3 62.1
ViDT-Swin-T [11] ✓ 50 38M 100G 44.8 64.5 48.7 25.9 47.6 62.1

Table 9. Comparison with state-of-the-art object detectors with ViT backbones on COCO val 2017. ‘MS’ denotes the use of
multi-scale features. ‘SMS’ denotes the use of sparse multi-scale features with our proposed IMFA. ‘ § ’ denotes two-stage
Transformer-based object detector, with the encoder producing ‘region proposals’ to initialize object queries.

Besides, we also compare our method with other state-of-the-art Transformer-based object detectors using
vision Transformers as backbones. As shown in Table 9, our DAB-DETR-Swin-T+IMFA still achieves the best
overall performance. We notice that ViDT [11] has a lower FLOPs than ours, because it adopts an ‘encoder-free
neck architecture’ based on deformable attention [13].

* marks corresponding author. † marks equal technical contribution.
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Figure 5. Additional visualization of IMFA’s sampling locations and their adaptively selected feature scales. The searched
sampling points mostly fall around the objects of interest, many of which are highly representative points with rich semantics,
such as objects’ extremities. Besides, IMFA adaptively selects appropriate feature scales for each sampling point, generating
sparse yet informative scale-adaptive features for refined detection predictions. Best viewed in color.

A.3. Additional Visualization Results

For a more comprehensive understanding of the proposed IMFA, we provide more visualization results on
IMFA’s sampling locations and IMFA’s adaptively selected feature scales in Fig. 5. These visualizations validate
the effectiveness of IMFA in searching informative locations and appropriate scales for multi-scale feature sam-
pling, even under very complex scenarios as shown in the first row. It is noteworthy that the sampling weights for
C5 are generally low, even for large objects. This is because C5 has the same feature scale as the encoded image
features, and thus IMFA tends to sample multi-scale features from C2-C4 for additional information.

A.4. Implementation Details for Human Pose Estimation

Section 5.4 investigates the generality of IMFA across various tasks by integrating it with PRTR (two-stage
variant) [5]. Here we present the implementation details of this integration.

The implementation details align with PRTR (two-stage variant) [5]’s implementation. Concretely, we adopt
the person detection results fine-tuned on COCO [6] to extract image patches that contain persons. These image
patches are resized into a fixed shape of 384x288, then processed by data augmentations including random rotation,
random scale, and horizontal flipping, and finally fed into the PRTR+IMFA model. We adopt the AdamW [9]
optimizer for training, with the base learning rate for the ResNet backbone [4] as 1e-5 and 1e-4 for the rest, with a
weight decay of 1e-4. The total number of training epochs is 200, and the learning rate is halved at the 120th and
140th epoch, respectively. For the Transformer part, the number of encoder and decoder layers are both set to 6.
The number of keypoint queries is set to 100. During inference, we adopt the common practice of flip-test [5] and
compute the keypoint coordinates by averaging the outputs of the original and flipped person image patches.



A.5. Further Discussions

Our differences with multi-scale feature fusion. Compared with existing multi-scale methods (e.g., FPN, DLA,
Amulet, Deformable DETR, SMCA-DETR, etc.), the way we utilize multi-scale features is significantly different.
Specifically, most existing methods use all the feature tokens from multi-scale features (typically 20x∼80x feature
tokens compared to single-scale), whereas IMFA only adds less than 1x multi-scale feature tokens by aggregating
multi-scale features from just a few informative keypoints. This is the key reason that IMFA can serve as a generic
paradigm for efficient exploitation of multi-scale features in Transformer-based detectors. Our experiments show
that, at very slight computational costs, IMFA is able to boost detection performance by large margins for multiple
Transformer-based detectors.

It is noteworthy that Deformable DETR [13] also adopts sparse multi-scale feature computation. However,
Deformable DETR still stores and uses all multi-scale feature tokens, which is different from IMFA. IMFA does
not need to compute and store dense and high-resolution multi-scale features and is more efficient. Thus, IMFA
introduces significantly smaller computational costs in processing multi-scale features.

Our relation to guided refinement. Guided refinement typically refers to the recursive update of predictions
based on previous predictions. A typical example is Cascade R-CNN [1]. Our proposed IMFA falls under the
umbrella of guided refinement. However, IMFA’s guided refinement is inherited from its baseline methods (e.g.,
DETR, Conditional DETR, Anchor DETR, DAB-DETR, etc.) that involve multiple decoder layers as refinement
stages. We highlight that IMFA does not introduce any additional refinement stages, and neither do we claim
IMFA’s guided refinement as a novelty or contribution. Our major contribution is that, on top of Transformer-
based detectors’ guided refinement patterns, we propose IMFA that efficiently and adaptively incorporates new
information (sparse multi-scale features) at each detection stage to achieve superior detection performance at
slight computational costs.
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