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In this document, we first describe additional implemen-
tation details in Sec. 1. We next showcase additional quan-
titative results in Sec. 2 and additional qualitative results in
Sec. 3. For videos of our qualitative results, visit the project
website: https://waabi.ai/research/oyster.

1. Implementation Details
Detector Architecture: We use a detector similar to
single-stage PIXOR detector [9]. The inputs to the detec-
tor are 3D voxelized binary LiDAR images from Bird-Eye
View (BEV), with front-range region of interest (ROI) of
[0, 80] meters longitudinally and [−40, 40] meters laterally
with respect to the traveling direction of the ego vehicle.
The step size of the voxel in BEV is 0.15625 meters, pro-
ducing an input feature resolution of 512×512. In the z-axis
of the voxels, we clip the range to be [−1.5, 5.5] meters, and
use a step size of 0.2 meters. We also concatenate 4 previ-
ous voxelized frames to the current frame along the channel
dimension, after ego motion compensation has been applied
to the LiDAR points of those 4 previous frames (assuming
access to the poses of ego vehicle in the world coordinate
per frame). As a result, the channel dimension for the input
feature maps is 35 × 5 = 175. Unlike PIXOR, we do not
use the point-wise reflectance values.

The detector architecture is similar to ResNet [3] with
Feature Pyramid Network (FPN) [6]. The ResNet back-
bone has: initial stem layers which downsample the fea-
ture resolution by 2×, and then 3 residual stages, each of
which downsamples the feature resolution by another 2×.
The downsampling in the stem layers is done via strided
conv3x3 in the first layer of stem; the downsampling in 3
residual stages is done only inside the first residual block of
each stage, via strided conv1x1 on the residual inputs and
strided conv3x3 in the middle of a Bottleneck block.
The 3 residual stages have (6, 6, 4) blocks respectively. We
use Sync BatchNorm (SyncBN) [4] for all normalization
layers, and the weights and biases of the final SyncBN in-
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side each Bottleneck block are initialized to be zero for
better initialization. We use ReLU activations as all non-
linearities. The stem layers reduce the channel dimension
of feature volumes from 175 in the BEV LiDAR inputs
to 64, and the Bottleneck layers in 3 residual stages
subsequently use (48, 64, 96) as the bottleneck dimensions
and expand those dimensions by 4× as the outputs of the
ResNet backbone and the inputs to the FPN neck. There-
fore, FPN inputs have (4×, 8×, 16×) downsampled reso-
lutions with channels (192, 256, 384), which are combined
to produce a feature map with 4× downsampled resolution
and 128 channels.

Detection is performed on the 4× downsampled reso-
lution from BEV. After FPN, we use separate headers for
the classification branch and the regression branch. The
classification branch applies 4 layers of (conv3x3 →
SyncBN → ReLU) with channel size 48 and then a
conv1x1 layer at the end; the regression branch is similar
but with channel size 128. The classification branch pro-
duces binary classification logits to predict the presense of
class-agnostic objects. The regression branch predicts a 6-
dimensional vector (dx, dy, log l, logw, sin θ, cos θ), where
(dx, dy) represent the predicted offsets of object centers
from the BEV meshgrid, and (log l, logw) represent the
log of the predicted physical lengths of the objects in terms
of meters. The outputted values for (sin θ, cos θ) are uncon-
strained since we only use θ = atan2(sin θ, cos θ) in the
prediction and loss calculations. The classification branch
uses focal initiailzation for the binary logits [7].

Ray-Dropping based Data Augmentations: There are
two ray-dropping techniques we use as data augmentations
to artifically make dense LiDAR point clouds sparser.

Given a 64-beam LiDAR and their (ordered) beam IDs,
we first randomly drop points based on their beam IDs.
More specifically, we randomly sample a beam drop ratio
from [1, 2, 3], then randomly sample a starting beam index
between 0 and this beam drop ratio, and finally, only keep
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the points whose beam IDs minus the starting beam index is
a multiple of the beam drop ratio. In other words, we only
keep the points inside beams that are uniformly spaced ac-
cording to beam IDs, and the spacing is determined by the
sampled beam drop ratio. Note that, when beam drop ratio
is 1, the point clouds stay intact.

Then, we convert the 3D points from Euclidean coordi-
nates to spherical coordinates, discretize the spherical coor-
dinates according to a certain resolution, and randomly sub-
sample the points with uniform spacing in the discretized
spherical coordinates. More specifically, we convert the
3D points whose Euclidean norms are bigger than 0.1
into spherical coordinates (theta,phi,radial dist),
and then randomly sample the discretization resolutions of
theta and phi from [600, 900, 1200, 1500]. We then ran-
domly sample spherical drop ratios from [1, 2] (when this
ratio is 1, the point clouds stay intact). We only keep
the points inside evenly-spaced discretized spherical coor-
dinates for both rows and columns, and the spacing is deter-
mined by the sampled spherical drop ratio.

We apply the two data augmentations in the sequential
order above. Ray dropping is applied not only during initial
bootstrapping to help the near-range detector generalize to
longer range, but during later rounds of self-training as well
when training is directly done on full range.

Point Clustering and Bounding Box Fitting: For point
clustering, we first remove the points outside the detection
ROI. Then, we try to remove the ground points based on
a fitted ground plane. To obtain a robust estimate of the
ground plane, we perform the first round of DBSCAN [1]
point clustering to get the 50-th percentile z-axis (height)
of non-outlier points, and then only fit a linear plane on the
points below this height. (On Argoverse 2, we change the
50-th percentile to 30-th percentile.) For DBSCAN, we use
eps = 0.4 and min samples = 8. The plane fitting
module uses Random sample consensus (RANSAC) algo-
rithm [2] with a minimum sample size of 1000 to fit a lin-
ear plane. To obtain a conservative estimate of the ground,
we apply two rounds of ground fitting, with a small nega-
tive offset applied to the z-axis proportionally and all the
points above the fitted plane removed after the first round
and before the second round of fitting, similar to [10]. We
then remove the points below this fitted plane, and then do
DBSCAN clustering again with the same parameters. For
each cluster, we fit a tightest bounding box using the al-
gorithm described in [11]. For persistence-based cluster-
ing [10], we first count the point-wise number of neighbors
with maximum threshold 0.5m among the adjacent 5 past
frames (including the current frame), and then construct
a KNN-based neighborhood graph with maximum number
of neighbors equal to 70 and the distance metric being L1
distance between ephemerality scores [10]. DBSCAN for

persistence-based clustering uses parameters eps = 0.1
and min samples = 10. We remove the boxes that ei-
ther have a BEV area of less than 0.4m2, or have a length l
or width w bigger than 15m. We use the same ground fit-
ting, point clustering, and boudning box fitting algorithms
for our method and all our baselines.

The near-range training in the initial bootstrapping phase
uses an RoI of [0, 40] meters longitudinally and [−20, 20]
meters laterally w.r.t the traveling direction of the ego vehi-
cle, since the point clustsers and their fitted bounding boxes
tend to have higher quality in this near-range RoI.

Unsupervised Tracking: We employ a simple online
tracker. For each new frame at time step t with detections
Bt = {bl

t} where each bl
t = (xlt, y
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l
t, w

l
t, θ

l
t) ∈ R5 is

the individual 2D BEV bounding box, we compute a cost
matrix with existing tracklets St = {sjt} as follows. For
each tracklet j, we first predict its bbox position (xjt , y

j
t )

at time t: if the tracklet has at least two past frames,
we set (xjt , y

j
t ) = 2 ∗ (xjt−1, y

j
t−1) − (xjt−2, y

j
t−2) via

naive extrapolation (assuming constant velocity between
two adjacent frames); otherwise we simply set (xjt , y

j
t ) =

(xjt−1, y
j
t−1). Then, for each pair of the detected bbox

bl
t and the predicted tracklet bbox bj

t , we compute the
Euclidean distance between the bbox centroids as `j,l =√

(xjt − xlt)2 + (yjt − ylt)2. For each existing tracklet, we
simply employ a greedy strategy to find the nearest detec-
tion l∗ = arg minl `

j,l, and if the closest distance lj,l
∗

is
greater than a threshold of 5.0m, then the tracklet has no
match. We use greedy matching instead of a more sophis-
ticated matching strategy such as Hungarian matching be-
cause it is more robust to noisy and spurious detections.

If a tracklet is matched to a new detection, we add the
detection to the tracklet and update the tracklet score cjt =
w·cjt−1+clt

w+1.0 , where cjt−1 is the old tracklet score, clt = 1.0
is the detection confidence score we set for every new de-

tection, and w =
∑nj

t−1

i=1 0.9i where njt−1 is the number of
tracking steps in the tracklet.

If a tracklet is not matched, we grow the tracklet by
naively extrapolating the position and angle, and set the new
confidence score as cjt = 0.9cjt−1.

If a new detection is not matched to any tracklet, we start
a new tracklet with confidence score cjt = 0.9. We set the
starting confidence score as 0.9 instead of 1.0 so that the
longer tracklet will survive the subsequent NMS due to its
higher confidence score.

We terminate all tracklets with a tracking confidence
score less than 0.1, and apply NMS at the end over all exist-
ing tracklets in the current frame with an IoU threshold of
0.1. We repeat this process for the next frame at time t + 1
until the end of the sequence.

As mentioned in the main paper, unsupervised tracking



is done in both the forward and the reverse direction of
time, to compute the temporal consistency score of a given
pseudo-label; pseudo-labels with low consistency scores are
ignored. This procedure is applied in every round of self-
training and the initial bootstrapping phase as well.

Training Details: The training loss for the detector is a
combination of the focal loss [7] and the rotation-robust
generalized IoU (rgiou) loss [12]. The focal loss uses an
alpha of 0.5 and a gamma of 2.0; the losses for positive
labels and negative labels are computed and summed sep-
arately, both normalized by the number of positive labels.
To determine which pixels on the feature map (note that
the feature map has a 4× downsampled resolution) count
as positive or negative, we first compute the axis-aligned
intersection-over-union (IoU) for all pixels in the output
feature map with respect to every object (in other words, the
IoU is calculated between a point and a box with different
centers but aligned sizes and yaws). For every object:

• If there exist pixels with this IoU value bigger than 0.5,
then we randomly sample one such pixel (per object)
to apply the losses on (positive focal loss + rgiou loss),
and do not apply any losses on other pixels where this
IoU value is also bigger than 0.5;

• Otherwise, if there are no pixels with this IoU value
bigger than 0.5, then we select the pixel with the high-
est IoU value (if the highest value is zero, then this
label is ignored) to apply the losses on, and do not ap-
ply any losses on other pixels where this IoU value is
smaller than the selected pixel but bigger than 0.3.

• For all the pixels that are selected as positive, apply
positive focal loss + rgiou loss; for all the pixels that
are not selected as positive and not set to be ignored,
apply negative focal loss.

We use Adam optimizer [5] with decoupled weight de-
cay [8], with a learning rate of 0.004 and a weight decay
coefficient of 0.0001. For PandaSet, we train the detector
for 20 epochs without learning rate decay. For Argoverse
2, we train on a 10× subsampled dataset (meaning that for
each sequence in the training set, we subsample the number
of frames by 10× per sequence to speed up training), and
train for 40 epochs, with the learning rate decreased by 10×
at the 20-th epoch. On both datasets, we use a batch size of
8 per GPU, and apply distributed training with 4 GPUs.

We use non-maximum suppression (NMS) to generate
the final detections. Prior to NMS, we first take the top
1000 scored detections per frame. We apply NMS with a
threshold of 0.1. After NMS, we take the top 100 scored
detections per frame. For pseudo-label generation of the
next self-training round, We use a score threshold of 0.4
after NMS.

2. Additional Quantitative Results
Detailed breakdown of near-range and far-range met-
rics: To showcase the effect of near-range training and
zero-shot extension to far-range and training with ray drop,
we additionally break down the [0, 80]m metrics in the
first three rows of Tab. 3 in the main paper into near-range
([0, 40)m) and far-range ([40, 80]m). As shown in Tab. 1, by
training in the near range with ray dropping, the detection
metrics for far-range objects significantly improve.

Measuring the gap between unsupervised and super-
vised methods: Tab. 2 shows a comparison between our
method and multiple supervised counterparts, trained with
varying levels of supervision. We evaluate with all classes
(vehicle, pedestrian, cyclist) combined, in a class-agnostic
manner. The table shows that despite the advancement of
unsupervised object detection made in this work, the re-
maining gap between unsupervised learning and supervised
learning for object detection remains large in the context
of self-driving. More specifically, our method OYSTER
surpasses supervised learning on a single log and starts to
match its supervised counterpart on 2 logs; however, com-
pared to the performance of supervised learning on frames
sub-sampled from the whole dataset (in other words, from
all the logs), our method is not yet as competitive.

Performance vs. number of self-training iterations:
We additionally study how the number of self-training it-
erations affects unsupervised detection performance. Fig. 1
showcases IoU and DTC metrics with respect to the number
of self-training iterations on both Pandaset and AV2. Note
that in the main paper we apply long tracklet refinement
only in the last iteration of the Pandaset experiments. For a
more fair comparison, in this ablation study we do not apply
the long tracklet refinement in the last iteration so that each
Pandaset self-training iteration employs the same pseudo-
label post-processing process. On the other hand, similar to
the main paper, we apply full refinement (both long tracklet
refinement and short tracklet filtering) in every AV2 self-
training iteration. Our results show that overall, for both
datasets, more self-training iterations improved almost all
metrics, with the exception that DTC-based recall dropped
slightly with the third self-training iteration. Therefore, we
stop the self-training loop at iteration 3 for Pandaset and it-
eration 2 for AV2. We leave DTC recall improvement with
more self-training iterations as future work.

3. Additional Qualitative Results:
Qualitative results of ours vs. baselines: Fig. 2 and
Fig. 3 show additional qualitative results comparing our
method and several baselines [1, 10] on Pandaset and AV2.
Our method is able to identify stationary actors and output



AP @ IoU Recall @ IoU AP @ ∆DTC Recall @ ∆DTC

ID ITR RD 0.3 0.5 0.7 0.3 0.5 0.7 1.5 1.0 0.5 1.5 1.0 0.5

[0
,4

0)
m M1 80 39.7 23.9 12.7 62.7 43.6 25.1 52.8 50.6 45.4 79.5 77.1 70.7

M2 40 42.7 25.6 10.6 64.5 43.1 22.8 55.1 52.7 46.7 80.4 78.0 71.5
M3 40 X 44.0 27.0 7.6 61.7 39.1 17.0 56.7 54.1 47.0 77.5 74.8 67.4

[4
0,

8
0]

m M1 80 2.1 0.3 0.0 19.5 7.4 2.0 25.0 23.5 18.7 61.6 59.1 51.1
M2 40 2.5 0.5 0.1 19.5 7.2 2.2 22.7 20.7 16.1 61.0 58.2 50.2
M3 40 X 6.7 1.3 0.3 25.8 9.1 2.6 30.7 28.2 22.0 64.3 61.1 52.0

Table 1. [Pandaset] Ablation study with ranges. All class evaluation in the range 0-40m (top) and 40-80m (bottom). Legend: ID=Model
identifier, ITR=Initial training range (first iteration) from 0 to X meters, RD=Ray-dropping.

AP @ IoU Recall @ IoU AP @ ∆DTC Recall @ ∆DTC

Supervision 0.3 0.5 0.7 0.3 0.5 0.7 1.5 1.0 0.5 1.5 1.0 0.5

1 log (80 frames) 36.8 30.7 18.9 46.9 36.4 23.2 48.6 45.9 37.9 65.1 61.4 52.5
2 logs (160 frames) 51.9 45.0 29.8 61.9 52.0 35.0 56.9 54.5 46.5 69.9 67.0 59.3
80 random frames 70.6 61.0 41.1 80.1 67.6 46.1 75.6 73.3 65.8 87.3 85.0 78.1
160 random frames 81.3 74.2 55.4 87.1 78.6 59.7 84.3 83.1 77.1 91.3 90.0 84.8

DBSCAN [1] (unsupervised) 3.5 1.1 0.3 28.6 15.9 8.3 10.9 9.9 8.0 50.9 48.3 43.1
MODEST [10] (unsupervised) 22.8 7.5 2.8 49.7 28.9 14.9 38.8 36.4 30.2 70.2 66.9 59.0
Ours (unsupervised) 43.5 29.5 18.1 62.8 44.8 28.1 33.8 44.3 48.7 54.4 67.0 72.3

Table 2. [Pandaset] Comparison against few-shot supervised methods. All-class evaluation on the range 0-80m.

detections with improved sizes and positions. Please also
refer to the supplementary video for more results.

Qualitative results of refinement with self-training:
Fig. 4 showcases the qualitative pseudo-labels after one iter-
ation of self-training on refined labels. We show the model
output after the second iteration of self-training on Pan-
daset, the long tracklet refinement results on the pseudo-
labels, followed by short tracklet filtering and a self-training
iteration with the refined pseudo-labels. Note that the long
tracklet refinement step effectively improves the bounding
box sizes for some actors, and the short tracklet filtering
is able to identify a few false positives and ignores them
during the re-training. With an additional round of self-
training, more labels are discovered and the bounding box
sizes are generally improved.

Failure cases: We additionally point to various failure
cases in different stages of our pipeline, including seed
labels, temporal-based filtering and iterative self-training.
First of all, our initial seed labels (produced by our base-
line DBSCAN) have many failure cases showcased in Fig. 6
of the main paper and Fig. 2 and Fig. 3 of the supplemen-
tary. The DBSCAN labels in the left column of the fig-
ures contain false positives and missed detections. Note that

thanks to our self-training iterations, early-stage missed de-
tections are discovered, as shown in Fig. 6 in the main pa-
per. However, there is a limit to what self-training can do.
In the second row of Fig. 5 of the main paper, our method
still misses detections from DBSCAN in the top left corner,
even though it discovers many objects on the right side of
the image. As for temporal consistency, in the third row
of Fig. 4 in the supplementary, temporal-consistency based
short tracklet filtering incorrectly filters out some cars in the
parking lot.
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Figure 1. Performance vs. number of self-training iterations. We showcase the IoU (left column) and DTC (right column) mean AP and
recall metrics with respect to the number of self-training iterations after the initial round. We denote the initial round results as iteration 0
in the x-axis. For both Pandaset (top row) and Argoverse (bottom row) results, more self-training iterations improved almost all metrics,
while DTC-based recall dropped slightly with the third self-training iteration.
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Figure 2. [Pandaset] Additional qualitative results comparing ours with baselines on frames in the validation split. We draw the
detections in purple and ground-truth bounding boxes in orange.



Figure 3. [AV2] Additional qualitative results comparing ours with baselines on frames in the validation split. We draw the detections in
purple and ground-truth bounding boxes in orange.



Figure 4. [Pandaset] Qualitative results before and after self-training with refinement. We take the model output from self-training
iteration 2 on the left, apply long tracklet refinement (middle left) and short tracklet filtering (middle right), and re-train with the refined
pseudo-labels, leading to new model output on the right. The new detections have larger bbox sizes and discover new objects as a result of
the long tracklet refinement and self-training. We draw the detections in purple and ground-truth bounding boxes in orange.
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