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A. Proofs
Proposition 1. Considering f(c) = Ac + b, A ∈ R3×3,
b ∈ R3×1, if F′

app = f ◦ Fapp,
∑T

i=1 wi = 1 and
vrr(r1, r2;F) < ϵ, we have vrr(r1, r2;F

′) < Kϵ, where
K = ∥A∥2 is the Lipschitz constant of f .

Proof.

vrr(r1, r2;F
′) =

∥∥C(r1;F
′)− C(r2;F

′)
∥∥

=

∥∥∥∥∥
T∑

i=1

wr1
i f(cr1i )−

T∑
i=1

wr2
i f(cr2i )

∥∥∥∥∥
=

∥∥∥∥∥
T∑

i=1

wr1
i (Acr1i + b)−

T∑
i=1

wr2
i (Acr2i + b)

∥∥∥∥∥
=

∥∥∥∥∥
T∑

i=1

wr1
i Acr1i −

T∑
i=1

wr2
i Acr2i

∥∥∥∥∥
=

∥∥∥∥∥A
(

T∑
i=1

wr1
i cr1i −

T∑
i=1

wr2
i cr2i

)∥∥∥∥∥
≤ ∥A∥

∥∥∥∥∥
T∑

i=1

wr1
i cr1i −

T∑
i=1

wr2
i cr2i

∥∥∥∥∥
= ∥A∥ vrr(r1, r2;F)
< Kϵ

Lemma 1. Given f = fl ◦ · · · ◦ f1, fj(x) = Ajx + b
if j = l and σ(Ajx) otherwise, where σ is a 1-Lipschitz
function. Then K = Πl

j=1 ∥Aj∥2 is the Lipschitz constant
of f .

Proof. Suppose that inputs x, y belong to the domain of fj ,

∥fj(x)− fj(y)∥ ≤ ∥σ(Ajx)− σ(Ajy)∥
≤ ∥Ajx−Ajy∥
≤ ∥Aj∥ ∥x− y∥ .

(1)
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When l = 2, the claim is clearly valid. The remaining cases
can be easily proved by induction.

Proposition 2. Considering f = fl ◦ · · · ◦ f1, fj(x) =
Ajx + b if j = l and σ(Ajx) otherwise, where σ =

max(0, x). If F′
app = f ◦ Fapp,

∑T
i=1 wi = 1

and maxi=1,...,T ∥wr1
i cr1i − wr2

i cr2i ∥ < ϵ/T , we have
vrr(r1, r2;F

′) < Kϵ, where K = Πl
j=1 ∥Aj∥2 is the Lip-

schitz constant of f .

Proof. Note that ∀a ∈ R+ and 1 ≤ j < l, afj(x) =
aσ(Ajx) = σ(aAjx) = fj(ax). Denoting f j = fj ◦ · · · ◦ f1,
we can get the following derivation:

af j(x) = aσ(Ajf
j−1(x)) = σ(aAjf

j−1(x))

= σ(aAjσ(Aj−1f
j−2(x)))

= σ(Ajσ(aAj−1f
j−2(x)))

· · ·

= f j(ax).

(2)

Because the weights are always non-negative in the volume ren-
dering integral, we further have

vrr(r1, r2;F
′) =

∥∥C(r1;F
′)− C(r2;F

′)
∥∥

=

∥∥∥∥∥
T∑

i=1

wr1
i f(cr1i )−

T∑
i=1

wr2
i f(cr2i )

∥∥∥∥∥
=

∥∥∥∥∥
T∑

i=1

wr1
i Alf

l−1(cr1i )−
T∑

i=1

wr2
i Alf

l−1(cr2i )

∥∥∥∥∥
=

∥∥∥∥∥
T∑

i=1

Alf
l−1(wr1

i cr1i )−
T∑

i=1

Alf
l−1(wr2

i cr2i )

∥∥∥∥∥
≤

T∑
i=1

∥∥∥Alf
l−1(wr1

i cr1i )−Alf
l−1(wr2

i cr2i )
∥∥∥ .
(3)
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Based on above inequality and Lemma 1, we have∥∥∥Alf
l−1(wr1

i cr1i )−Alf
l−1(wr2

i cr2i )
∥∥∥

≤ ∥Al∥
∥∥∥f l−1(wr1

i cr1i )− f l−1(wr2
i cr2i )

∥∥∥
≤

l∏
j=1

∥Ai∥ ∥wr1
i cr1i − wr2

i cr2i ∥

= K ∥wr1
i cr1i − wr2

i cr2i ∥ .

(4)

Therefore,

vrr(r1, r2;F
′) ≤

T∑
i=1

K ∥wr1
i cr1i − wr2

i cr2i ∥

< K

T∑
i=1

ϵ/T = Kϵ

(5)

Lemma 2. Fapp(x,d) = Fsh(x)Γ(d) + v, where Γ(d) :
R2×1 → Rℓ×1 is the spherical harmonic basis function,
Fsh(x) : R3×1 → R3×ℓ is the coefficient function, and v ∈
R3×1. Given A ∈ R3×3, b ∈ R3×1, then AFapp(x,d) +
b ⇔ AFsh(x) + 2

√
π[Av + b− v,0].

Proof.

AFapp(x,d) + b = A(Fsh(x)Γ(d) + v) + b

= AFsh(x)Γ(d) +Av + b

= AFsh(x)Γ(d) +Av + b.

(6)

Because the first component of the spherical harmonic basis
function outputs a constant value 1

2
√
π

, we have

(AFsh(x) + 2
√
π[Av + b− v,0])Γ(d) + v

= AFshΓ(d) +Av + b− v + v

= AFshΓ(d) +Av + b

(7)

Remark of Lemma 2. Similarly, it can prove AFsh(x) +
[b,0] ⇔ AFapp(x,d) +

b
2
√
π
+ v −Av.

Proposition 3. Considering f(x) = Ax + b, A ∈
R3×ℓ, b ∈ R3×ℓ, if F′

sh = f ◦ Fsh,
∑T

i=1 wi = 1,
vrr(r1, r2;F) < ϵ1 and ∥Γ(dr1)− Γ(dr2)∥ < ϵ2, we have
vrr(r1, r2;F

′) < K1ϵ1 + K2ϵ2, where K1 = ∥A∥2 and
K2 = ∥b∥2. Moreover, if b vanishes except for the first
column (i.e., the form in above remark), vrr(r1, r2;F′) <
K1ϵ1.

Proof.

vrr(r1, r2;F
′)

=
∥∥C(r1;F

′)− C(r2;F
′)
∥∥

=

∥∥∥∥∥
T∑

i=1

wr1
i F′(xr1

i )Γ(dr1)−
T∑

i=1

wr2
i F′(xr2

i )Γ(dr2)

∥∥∥∥∥
≤

∥∥∥∥∥
T∑

i=1

wr1
i AF(xr1

i )Γ(dr1)−
T∑

i=1

wr2
i AF(xr2

i )Γ(dr2)

∥∥∥∥∥
+ ∥bΓ(dr1)− bΓ(dr2)∥

≤ ∥A∥ vrr(r1, r2;F) + ∥b∥ ∥Γ(dr1)− Γ(dr2)∥
< K1ϵ1 +K2ϵ2.

(8)

If b vanishes except for the first column, ∥bΓ(dr1)− bΓ(dr2)∥ =

0, thus vrr(r1, r2;F′) < K1ϵ1.

Remarks. Prop. 3 extends Lipschitz-constrained linear
mapping in Prop. 1 from appearance representation to
spherical harmonics. To prove the bound of Lipschitz MLP
applied to spherical harmonics, some fussy assumptions are
further required, and the proof will be trivial to repeat the
above proving processes. We believe the three propositions
have exhibited the intuition and importance of Lipschitz
transformations for this task.

B. More results
For comprehensive analysis and evaluation, we have sup-

plied a video in the supplementary materials, which con-
tains the continuous novel views of multiple scenes stylized
with various references. It can be observed that, both WCT2

and CCPL create noises and disharmony to affect the pho-
torealism of video. In specific, WCT2 is likely to sharpen
the edges excessively that produces artificial boundaries
around edges (e.g., the trex and room scenes). It also gen-
erates noticeable noises in some stylized scenes. The re-
sults of CCPL usually have richer colors that enhances the
visual effects. However, the variegated colors acceptable
in a still image may be harmful to 3D scenes. For exam-
ple, in the trex and fortress scenes, the interframe variations
of colors results in artifacts and unconsistency of videos.
In the flower scene, due to the unconsistency, the color-
ful leaves and flowers seem to be unrealistic and flickering.
In contrast, LipRF can alleviate these downsides to gener-
ate more consistent and photorealistic stylized novel views
while transferring the color style. The videos of LipRF are
more like camera shots to meet the requirement of photore-
alistic 3D scene stylization.
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