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A. Experiments
A.1. Datasets

We evaluate UniDAformer over four datasets that have been widely used in domain adaptive visual recognition tasks:
1) Cityscapes [8] aims for street scene understanding and autonomous driving. The images are collected under normal
weather conditions from 50 European cities, including 2,975 images as training set and 500 images as validation set, with
panoptic segmentation annotations of 30 categories. All the images have the same resolution of 1024 × 2048.
2) Foggy cityscapes [21] is a synthesized dataset that is derived on top of Cityscapes by including simulated fog. This dataset
inherits the dense panoptic segmentation annotations of 30 categories from Cityscapes.
3) SYNTHIA [20] is a large-scale synthesized dataset with 9,400 images that stimulated with virtual environments. This
dataset provides both instance-level annotations for instance segmentation and pixel-level annotations for semantic segmen-
tation. We generate panoptic segmentation annotations by fusing instance-level annotations and pixel-level annotations. All
the images have the same resolution of 760 × 1280.
4) VIPER [19] is a visual perception benchmark with more than 250K high-resolution video frames collected from the
computer game Grand Theft Auto V (GTA5). This dataset provides various types of annotations, including instance-level
annotations and pixel-level annotations. We generate panoptic segmentation annotations by fusing instance-level annotations
and pixel-level annotations. All the images have the same resolution of 1080 × 1920.

A.2. Implementation Details

For the experiments with DETR [4], we employ ResNet-50 [13] as backbone (pre-trained on ImageNet [9]). We adopt
SGD optimizer [3] with a momentum 0.9 and a weight decay 1e− 4. The initial learning rate is 2e− 4. Note we follow [10]
to modify the DETR [4] architecture and additionally add a semantic segmentation [15] head on it.

For the experiments with PSN [16], we adopt Deeplab-V2 [5] as semantic branch network and Mask R-CNN [12] as
instance segmentation branch. The experiments employ ResNet-101 [13] as backbone (pre-trained on ImageNet [9]). The
model are trained with the SGD optimizer [3] with learning rate 2.5× 10−4, momentum 0.9, and weight decay 10−4.

For hyper-parameters in UniDAformer, we fix the momentum coefficient γ at 0.999 as in [11] and the update coefficient
γ′ in Eq.6 at 0.999. In Superpixel-wise Calibration, we compute superpixels using SLIC algorithm [1] and the number of
superpixels I is fixed at 500.

A.3. Discussions

A.3.1 Parameter Analysis

Momentum Model Coefficient. As described in Section Method in the main text, we adopt a momentum model for pseudo
label generation as its slow and smooth parameter updates facilitates more stable and consistent pseudo labels generation
along the training process. Here we study how momentum model coefficient γ affects the adaptation performance over task
SYNTHIA → Cityscapes with DETR [4]. As Table 1 shows, UniDAformer is robust when γ is large enough (from 0.99 to
0.9999) while its performance starts to drop slightly when γ becomes too small, which further demonstrates the effectiveness
of the slow-update momentum model for pseudo label generation.
Update Coefficient. The update coefficient γ′ in Eq.6 in the main text decides the update speed of mask centroids: the
smaller it is, the faster mask centroids change. Table 2 shows it affects segmentation over SYNTHIA → Cityscapes with
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Momentum Model Coefficient γ

Method 0.5 0.9 0.99 0.999 0.9999

mSQ mRQ mPQ mSQ mRQ mPQ mSQ mRQ mPQ mSQ mRQ mPQ mSQ mRQ mPQ

UniDAformer 60.6 39.2 30.8 62.5 40.3 31.7 63.1 42.3 32.8 64.7 42.2 33.0 64.2 41.7 32.9

Table 1. The momentum model coefficient γ affects domain adaptation. The experiments are conducted over task SYNTHIA → Cityscapes.

DETR [4]. We can see that UniDAformer is robust when γ′ is relatively large (from 0.99 to 0.999) otherwise its performance
starts to drop slightly. This shows that smooth centroid update is helpful, without which the mask centroid and the calibrated
pseudo masks could become unstable.

Update Coefficient γ′

Method 0.5 0.9 0.99 0.999 0.9999

mSQ mRQ mPQ mSQ mRQ mPQ mSQ mRQ mPQ mSQ mRQ mPQ mSQ mRQ mPQ

UniDAformer 62.2 40.8 31.5 62.4 41.7 32.5 64.5 42.0 32.8 64.7 42.2 33.0 64.3 42.1 32.9

Table 2. The mask centroid update coefficient γ′ defined in Eq.6 affects domain adaptation. The experiments are conducted over task
SYNTHIA → Cityscapes.

Number of Superpixels. Parameter I decides the number of the computed superpixels in Superpixel Calibration. We studied
the sensitivity of I over task SYNTHIA → Cityscapes. As Table 3 shows, UniDAformer is quite tolerant to parameter I and
the best performance is obtained when I = 500.

The Number of Superpixels I

Method 400 500 600 700 1000

mSQ mRQ mPQ mSQ mRQ mPQ mSQ mRQ mPQ mSQ mRQ mPQ mSQ mRQ mPQ

UniDAformer 63.7 42.2 32.7 64.7 42.2 33.0 63.8 41.9 32.8 62.4 41.3 32.6 63.7 42.5 32.9

Table 3. The number of superpixels I affects domain adaptation. The experiments are conducted over task SYNTHIA → Cityscapes.

A.3.2 Comparison with Existing Online Self-training Methods

We compare UniDAformer with several semantic segmentation methods [2,18] that perform online self-training. In particular,
existing online self-training methods directly enforce pixel-wise prediction consistency across different image augmentations
for learning robust representation. In contrast, UniDAformer focuses on the false prediction issue and introduces HMC to
calibrate pseudo masks during self-training. Experiments in Table 4 show that UniDAformer outperforms [18] and [2] clearly,
largely due to the proposed HMC that helps to generate more accurate pseudo masks under massive false predictions.

PixMatch [18] SAC [2] UniDAformer

mSQ mRQ mPQ mSQ mRQ mPQ mSQ mRQ mPQ

60.7 34.2 25.9 60.7 34.2 25.9 64.7 42.2 33.0

Table 4. Comparison with existing online self-training UDA methods [2,18] using unified panoptic segmentation architecture [4] over task
SYNTHIA → Cityscapes.

A.3.3 Comparison with Existing Superpixel-based UDA Methods

As described in Section Method in the main text, the core of HMC is a hierarchical design that corrects pseudo labels jointly
and collaboratively based on information flowing across the three levels. Superpixel-wise calibration is the middle stage



that plays a role in linking coarse region-wise calibration and fine pixel-wise calibration. To the best of our knowledge,
superpixel was not used for domain adaptive panoptic segmentation before though it has been used for domain adaptive
semantic segmentation [23, 24]. However, [23, 24] use superpixels to capture and transfer spatial relations which is very
different from our work in terms of tasks, motivations, and objectives of using superpixels. Additionally, Table 5 shows that
UniDAformer outperforms [23] and [24] clearly, largely because the proposed coarse-to-fine calibration (i.e., from region to
superpixel and pixel) helps to rectify the pseudo masks effectively.

CDA [23] RPT [24] UniDAformer

mSQ mRQ mPQ mSQ mRQ mPQ mSQ mRQ mPQ

62.1 33.8 25.6 61.2 34.7 26.3 64.7 42.2 33.0

Table 5. Comparison with existing superpixel-based UDA methods [23, 24] using unified panoptic segmentation architecture [4] over task
SYNTHIA → Cityscapes.

A.3.4 Synergetic Experiments

As described in Section Introduction in the main text, our Hierarchical Mask Calibration (HMC) introduces little extra
computation overhead (i.e., 0.01% parameters overhead) and could be used as a plug-in. Here we study the synergetic benefits
of the proposed HMC by incorporating it into several domain adaptation methods under task SYNTHIA → Cityscapes. As
table 6 shows, the incorporation of HMC improves domain adaptation methods consistently across all evaluation metrics
(i.e., mSQ, mRQ and mPQ). The experiment results indicate that the proposed HMC is complementary to existing domain
adaptation methods and could be used as a plug-in with consistent performance improvement.

Method Base + HMC Gain

mSQ mRQ mPQ mSQ mRQ mPQ mSQ mRQ mPQ

DAF [6] 59.0 28.3 20.9 62.2 39.9 30.1 +3.2 +11.6 +9.2
ADVENT [22] 60.2 33.0 25.0 63.7 41.9 32.5 +3.5 +8.9 +7.5

CVRN [14] 61.4 35.9 27.9 63.3 43.4 33.6 +1.9 +7.5 +5.7

Table 6. Synergetic Experiments of HMC: the proposed HMC can be used as a plug-in and the incorporation of HMC brings performance
improvement to existing domain adaptation methods consistently.

A.3.5 Generalization across Different Unified Architectures

We examine the proposed UniDAformer over other two unified architectures, i.e., MaskFormer [7] and PanopticFCN [17]
under task SYNTHIA → Cityscapes. The experimental results in Table 7 show that our UniDAformer achieves similar
improvements as with the DETR [4] architecture, indicating that UniDAformer can work with different unified architectures
with consistent improvements.

Method Baseline UniDAformer Gain

mSQ mRQ mPQ mSQ mRQ mPQ mSQ mRQ mPQ

MaskF [7] 56.6 19.2 16.2 60.7 34.2 25.9 +4.1 +15.0 9.7
PanFCN [17] 47.5 19.7 15.8 60.5 34.8 26.5 +13.0 +15.1 10.7

Table 7. Generalization across different unified architectures [7, 17] over task SYNTHIA → Cityscapes.

A.3.6 Why Unified Networks Have Poor Adaptation Baseline?

Table 1 in the main text shows that most unified panoptic segmentation networks outperform traditional multi-branch panoptic
segmentation network by large margins under the supervised setup while opposite results are observed under unsupervised
domain adaptation setup. Here we provide possible insights behind it. In panoptic segmentation, things and stuff predictions



rely on different types of features [17], i.e., things prediction requires instance-aware features that vary among semantic
categories as well as different instance identities, while stuff prediction requires semantic-consistency features that vary
according to different semantic categories only. Several recent unified panoptic segmentation works [4, 7, 17] propose to
tackle such conflict for supervised learning. However, these works can not handle such conflict under unsupervised domain
adaptation setup as they were designed for supervised learning where the ground-truth annotations are available. As a result,
the feature conflict between things and stuff still exists in unified domain adaptation panoptic segmentation problem and leads
to large performance drops as shown in Table 1 of the main text. Specifically, such drops are reflected primarily in severe
false prediction issue as illustrated in Fig.4 (a) of the main text.

B. Qualitative Results
B.1. Visualization of the Calibration Process

We present visual illustrations of Hierarchical Mask Calibration over task SYNTHIA → Cityscapes. Fig. 1 shows the
corresponding calibrated mask over each level. It can be seen that the HMC-calibrated masks M ′ achieve higher IoU than
the original pseudo masks M̂ , which indicates the superior ability of HMC in correcting pseudo masks.

Ground Truth M̂ M I Mssp M ′

Figure 1. Visualization of HMC-calibrated masks over task SYNTHIA → Cityscapes. We sample 6 masks from 2 images as examples.
The ground truth of each mask is shown in the first column, and original pseudo mask M̂ , computed superpixels MI , superpixel-wise
calibrated mask Msp and pixel-wise calibrated mask M ′ are shown from the second to fifth columns. The insertion over union (IoU) is
computed between each mask and its corresponding ground-truth mask.

B.2. Qualitative Comparisons

We present qualitative illustrations and comparisons over task SYNTHIA → Cityscapes, Cityscapes → Foggy cityscapes
and VIPER → Cityscapes. As Fig. 2 show, UniDAformer yields the best segmentation with more true positives and less false
predictions consistently which is aligned well with the quantitative results.



Original Image Baseline [4] CVRN [14] UniDAformer(Ours) Ground Truth

Figure 2. Qualitative comparison of UniDAformer with the baseline model [4] and CVRN [14] over three tasks including SYNTHIA →
Cityscapes as shown in rows 1-3, Cityscapes → Foggy Cityscapes as shown in rows 4-6 and VIPER → Cityscapes as shown in rows 7-9,
respectively. The proposed UniDAformer yields best segmentation with more true positives, less false predictions and finer boundary.

C. Social Impacts and Limitations
This work presents a new unified learning pipeline for domain adaptive panoptic segmentation, which has clear advantages

in less parameters and simpler training and inference pipeline. In another word, unified domain adaptive panoptic segmen-
tation benefits the computer vision community by providing a new solution for domain adaptive panoptic segmentation that
involves much fewer parameters and simplifies the training and inference pipeline greatly. However, the explored techniques
in this work are still at an early stage and thus our proposed method can serve as an auxiliary tool in applications instead of
the hard control system that could lead to harmful consequences.
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