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In this supplementary material, we will further detail the
following aspects omitted in the main paper.

• Section A: Construction details about the proposed
VQACL setting.

• Section B: More details about the compared contin-
ual learning algorithms, including EWC [9], MAS [2]),
ER [6], DER [3], and VS [16].

• Section C: More quantitative and qualitative experiment
results, which further justify the effectiveness of the pro-
posed method.

A. More details about the VQACL Setting
we establish a novel VQA Continual Learning setting

named VQACL, which contains two key components: a
dual-level task sequence where visual and linguistic data
are nested, and a novel composition testing containing new
skill-concept combinations.
Dual-Level Task Definition. In the outer level, according
to the question type annotation, we define ten linguistic-
driven tasks for the VQA v2 dataset, including Recogni-
tion, Location, Judge, Commonsense, Count, Action, Color,
Type, Subcategory, and Causal. For the NExT-QA dataset,
eight linguistic-driven tasks are defined in our VQACL
setting (i.e., CausalWhy (CW), TemporalNext (TN), Tempo-
ralCurrent (TC), DescriptiveLocation (DL), DescriptiveBi-
nary (DB), DescriptiveCount (DC), DescriptiveOther (DO),
and CausalHow (CH)). Detailed statistics are provided in
Table 1 and Table 2. In the inner level, we define five
object groups and randomly assign them to different visual-
driven tasks. In VQA v2 and NExT-QA, the object groups
are obtained by uniformly partitioning the object classes
annotated in [10] and [18], respectively. Detailed partition
results are provided in Table 3 and Table 4.
Novel Composition Testing. In VQA v2, we find that for
some types of questions (e.g., Judge, Commonsense), their
ground-truth answers are mostly ‘Yes’ or ‘No’, which are
too simple and not suitable for the compositional general-
izability evaluation. Therefore, for the novel composition

testing in VQA v2, we select six representative linguistic-
driven tasks: Location, Count, Action, Color, Type, and
Subcategory. For the novel composition testing in NExT-
QA, we consider the TN, TC, DL, DB, DC, DO, and CH
tasks.
Evaluation Metric. As mentioned in Section 3.3 in the
main paper, in NExT-QA, we use Wu-Palmer similarity
(WUPS) [11] following [18] to compute the model perfor-
mance a in our VQACL setting. Specifically, the WUPS
score is adopted to semantically evaluate the generated an-
swer. Given an image and a question, suppose the predicted
answer is R = {r1, r2, ..., ri, ...} and the corresponding
ground-truth answer is Y = {y1, y2, ..., yi, ...}, where ri
and yi respectively denote the i-th words of the predicted
and ground-truth answers. Then, the WUPS score computes
the similarity between two answers as follows:

WUPS(R, Y ) = min
{∏

r∈R maxy∈Y WUP (r, y),∏
y∈Y maxr∈R WUP (y, r)

}
× 100.

(1)
In Eq. (1), WUP (r, y) calculates the Wu-Parlmer similar-
ity [8, 17] of two words based on their depth in the taxon-
omy [4, 12]: WUP(r,y)=2depth(lcs) / (depth(r)+depth(y)),
where lcs is the least common ancestor of the words r and y.
If two words are semantically closer, they would be in same
or nearer depths in the hierarchy and share more common
ancestors, thus getting a higher WUP score.

For VQA v2, following [7], we leverage the percentage
of correctly answered questions as the a. Specifically, a
question is considered to be answered correctly only if the
predicted answer is exactly the same as the ground-truth
answer.

B. Continual Learning Methods
In our VQACL setting, we investigate and evaluate

five well-established and state-of-the art continual learning
methods, including two regularization methods (EWC [9],
MAS [2]) and three rehearsal-based approaches (ER [6],
DER [3], and VS [16]). For a fair comparison, all the
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Table 1. Linguistic-driven task statistics of VQA v2 in the VQACL setting. Stan. Test denotes the standard test set.

Task Train Val Stan. Test Examples

Recognition 131,478 5,579 5,628 What is on the floor? What does the sign say?
Location 12,580 611 611 Where is the giraffe? Where are the people standing?
Judge 160,179 7,126 7,194 Is the baby playing ball? Are the windows big?
Commonsense 25,211 1,114 1,100 Do the elephants have tusks? Do the dogs know how to swim?
Count 62,156 2,651 2,658 How many beds? How many seats are there?
Action 33,633 1,498 1,373 Are they drinking wine? Is the person flying?
Color 50,872 2,322 2,192 What color is the bedspread? What color are the gym shoes?
Type 23,932 1,119 1,089 What type of building is this? What type of animal is shown?
Subcategory 31,594 1,477 1,416 What brand is the umbrella? What brand are his shoes?
Causal 5,868 231 200 Why does he have glasses on? Why is the dog jumping?

Table 2. Linguistic-driven task statistics of NExT-QA in the VQACL setting. Stan. Test denotes the standard test set. CW: CausalWhy; TN:
TemporalNext; TC: TemporalCurrent; DL: DescriptiveLocation; DB: DescriptiveBinary; DC: DescriptiveCount; DO: DescriptiveOther;
CH: CausalHow.

Task Train Val Stan. Test Examples

CW 13,552 1,928 3,333 Why is the lady sitting down? Why is the baby’s hair wet?
TN 5,685 895 1,399 What does baby do after picking up the toy? What did lady do after adjusting shirt?
TC 4,797 663 1,165 What event is happening? What sport is the man doing?
DL 1,942 295 482 Where are the two people dancing? Where is this video taken?
DB 2,928 277 495 Is the baby able to walk? Does the girl cry?
DC 1,378 192 365 How many babies are there? How many dogs are there?
DO 2,549 356 672 What season is this? What does the man use to stir the food in the pan?
CH 4,400 683 1,174 How did the singer project her voice? How did the boy in the box move forward?

methods are implemented using official codes and added to
the same transformer backbone introduced in Section 5.1 in
the main paper as our method. Specifically,
EWC [9] is a regularization method and remembers old
tasks by selectively slowing down learning on the param-
eters that are important for these tasks. To achieve it, EWC
uses the Fisher Information Matrix [13] to estimate the
importance of each parameter, and adds an auxiliary L2 loss
between the important parameters learned from the new task
and old tasks.
MAS [2] is also a regularization method and discourages
big changes in parameters that are important for previous
tasks through an additional L2 loss. To estimate the im-
portance of a parameter, MAS measures how sensitive the
predicted output function is to a change in this parameter.
ER [6] is a rehearsal approach and randomly stores visited
examples in a fix-sized memory called the replay memory.
At each training step, it randomly samples these stored
examples for retraining. Consistent with our method, the
memory size of ER is set to 5,000 for VQA v2 and 500
for NExT-QA. Since ER is well-established and simple to
implement, we utilize it as the baseline of our proposed
approach.
DER [3] belongs to rehearsal methods and adopts reservoir
sampling [15] to decide examples to store and replace from

the replayed memory. Specifically, the reservoir algorithm
ensures each visited example has the same probability to be
stored in the memory. Based on the memory, DER designs
a dark experience based knowledge distillation strategy to
match the network’s output logits sampled throughout the
training process, which encourages the network to mimic its
original responses for past examples. In our experiments,
the memory size is set to 5,000 for VQA v2 and 500 for
NExT-QA.
VS [16] is a rehearsal method and considers the feature
compatibility between the ongoing and previous data. To
model the feature consistency and mitigate the forgetting,
it designs a neighbor-session model coherence loss and an
inter-session data coherence loss. We suggest readers to
check Wan et al. [16] for more details about these two
losses. As in our method, the memory size of VS is set
to 5,000 for VQA v2 and 500 for NExT-QA.

C. Experimental Results
C.1. More Fine-grained Results in the VQACL

Table 5 and Table 6 respectively provide fine-grained
model performance on the standard continual learning test
of VQA v2 and NExT-QA. Specifically, the results shown
in each column denote the model’s final performance on the
corresponding linguistic-driven task, and the Final Average



Table 3. Detailed information about the five object groups in VQA v2.

Task Objects

Group 1 hot dog, fork, orange, snowboard, potted plant, person, toilet, laptop, surfboard, bench, bus, dog,
knife, pizza, handbag, bicycle

Group 2 horse, cell phone, elephant, boat, zebra, apple, stop sign, microwave, spoon, cup, skateboard,
tie, umbrella, sandwich, bear

Group 3 donut, truck, frisbee, giraffe, dining table, motorcycle, parking meter, car, oven, airplane, bed,
sheep, baseball bat

Group 4 skis, baseball glove, tennis racket, tv, traffic light, kite, cake, keyboard, bottle, remote,
bird, carrot

Group 5 suitcase, couch, broccoli, cow, fir hydrant, chair, mouse, cat, banana, wine glass, backpack,
bowl, sports ball, train

Table 4. Detailed information about the five object groups in NExT-QA.

Task Objects

Group 1 bicycle, camel, bat, microwave, snake, sofa, traffic light, hamster/rat, chicken, oven, stop sign,
vegetables, skateboard, bird, toilet, racket

Group 2 crab, camera, lion, ball/sports ball, crocodile, screen/monitor, baby walker, cat, squirrel, frisbee,
cattle/cow, sheep/goat, adult, scooter, electric fan, stool

Group 3 piano, watercraft, kangaroo, train, fruits, pig, suitcase, bear, tiger, bench, elephant, motorcycle,
horse, snowboard, surfboard, handbag

Group 4 ski, stingray, antelope, toy, child, duck, guitar, dish, fish, cake, turtle, leopard, laptop, panda,
table, cup

Group 5 penguin, faucet, car, bottle, bus/truck, aircraft, baby, bread, baby seat, cellphone, sink, rabbit,
backpack, chair, dog, refrigerator

Performance (AP) across all tasks is provided in the last
column. From Table 5 and Table 6, we can observe that our
approach achieves the highest performance on most tasks
and outperforms other continual learning methods with
clear improvements, especially on the Location (i.e., 6.66%
to 19.95% ) and Type (i.e., 3.05% to 15.38% ) task in VQA
v2, and DB (i.e., 2.75% to 40.93%) and DO (i.e., 2.07%
to 23.38%) task in NExT-QA. In conclusion, the detailed
results further demonstrate the superiority of our proposed
method, which may benefit from the learned discriminative
sample-specific feature and generalizable sample-invariant
feature.

C.2. Backward Transfer (BWT) Analysis

BWT [3,5] is the influence of learning a task on the per-
formance of previous tasks, defined by BWT= at,T − at,t,
where at,T and at,t respectively denotes the testing perfor-
mance on the t-th task when the model completed learning
the final T -th task and the t-th task, t = {1, ..., T − 1}.
We analyze BWT for different rehearsal methods (ER [6],
DER [3], VS [16]) on the standard test set of VQA v2 with

5,000 memory size, and the results are illustrated in Fig. 1.
From the figure, we can observe that the compared ap-
proaches have large negative BWT in the VQACL setting,
which means they suffer from severe forgetting problem. In
contrast, our model even achieves positive BWT on the 2-th
and 4-th tasks, indicating that the learning on new tasks can
boost the performance of previous tasks in our method. The
results further demonstrate the effectiveness of the proposed
representation learning approach.

C.3. Qualitative Results

In the VQACL setting, Fig. 2 presents some qualitative
examples in both the standard and novel composition test
set of VQA v2, which are predicted by our method and
the baseline model that without the sample-specific and
sample-variant features. For the standard testing shown in
Fig 2(a), we can observe that the baseline tends to predict
some words that are unrelated to the question input. For
example, it incorrectly generates the word ‘happy’ for the
first example and the ‘hammer time’ for the second ex-
ample. Actually, we find that these words often appear



Table 5. The VQA performance (%) on the standard test set of VQA v2 with the VQACL setting. The memory size in the rehearsal
methods is 5,000. The results of our method are highlighted in bold.

Method Recognition Location Judge Commonsense Count Action Color Type Subcategory Causal AP

Joint 26.70 24.29 64.94 66.30 34.80 57.89 49.32 30.95 46.02 11.95 51.64

Vanilla 7.39 4.94 22.29 32.30 0.71 12.14 12.10 10.69 27.29 15.10 14.49
EWC [9] 6.73 8.43 27.22 47.10 0.14 12.40 1.76 10.98 31.05 11.85 15.77
MAS [2] 30.81 8.07 25.50 4.00 31.90 32.39 26.24 24.75 19.85 2.75 20.56

ER [6] 18.64 21.36 61.27 64.17 30.29 52.84 43.39 23.31 42.75 11.85 36.99
DER [3] 14.55 13.83 62.88 65.16 30.96 51.19 40.51 19.04 42.87 12.55 35.35
VS [16] 15.66 19.21 59.86 66.16 27.28 47.79 32.32 20.44 41.38 10.20 34.03

Ours 20.47 28.02 62.55 68.61 29.35 50.66 44.45 26.36 44.65 12.60 38.77

Table 6. The VQA performances (%) on the standard test set of NExT-QA with the VQACL setting. The memory size in the rehearsal
methods is 500. The results of our method are highlighted in bold.

Method CW TN TC DL DB DC DO CH AP

Joint 10.84 11.62 19.47 34.96 66.73 91.73 40.25 11.76 35.92

Vanilla 7.80 7.78 10.63 10.26 16.55 18.62 11.24 12.91 11.97
EWC [9] 8.71 9.19 11.79 9.54 20.22 17.03 14.05 13.56 13.01
MAS [2] 5.14 1.09 6.45 4.57 14.68 89.86 16.97 5.53 18.04

ER [6] 7.15 7.71 15.11 21.81 52.86 90.39 35.36 13.98 30.55
DER [3] 0.83 8.32 14.41 31.89 31.06 91.17 20.30 11.39 26.17
VS [16] 6.72 7.39 11.47 19.61 49.72 88.02 31.65 10.43 28.13

Ours 7.48 10.32 13.39 30.52 55.61 90.72 37.43 12.68 32.27
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Figure 1. Backward Transfer (BWT) analysis for each linguistic-
driven task in the VQACL setting.

in the last Causal task of the continual learning sequence.
The results indicate that the baseline is prone to ignore the
old experience and focus on the newest learned knowledge
in continual VQA, that is, suffering from the catastrophic
forgetting problem. In contrast, our method can generate
correct answers, even though the examples are from pre-
viously learned tasks (e.g., Recognition and Judge). The
superior performance demonstrates the effectiveness of our
approach in VQA continual learning. Besides, for the novel

composition testing shown in Fig 2(b), the baseline tends
to exploit the well-known language bias [1, 14] and choose
the incorrect high-frequency answers (e.g., 2, red), which
shows that it cannot do well in the compositional general-
ization. Differently, our model consistently makes correct
predictions, which indicates that the proposed model can
successfully generalize to novel skill-concept compositions.
It may be attributed to our effective sample-specific features
and generalizable sample-invariant features.
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