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1. The impact of deep features to CVM

Figure 1. Dice coefficient values of the contrast-based variational
model (CVM) on the training set of Camelyon-16 using different
deep features. This figure suggests the performance of CVM is re-
lated to the quality of the deep features, and the deep segmentation
model and CVM are mutually reliant.

We further explore the impact of the learned deep fea-
tures on the segmentation performance of the contrast-based
variational model (CVM). Figure.1 shows the correspond-
ing results on Camelyon-16, in which the blue bar repre-
sents the CVM model on the training sets, while the orange
bar represents the deep segmentation model on the test set.
Note that the CVM is only applied to the training set, and is
not applicable to the testing set as there are no input anno-
tated points during the inference period. The three groups
(from left to right) represent the deep segmentation mod-
els trained without CVM as the complementary supervision,
with CVM as the complementary supervision, and the fully-
supervised, respectively. From the first two groups it is clear
that if the learned features are with better quality that the
deep segmentation model achieves higher performance on
the test set when complementary supervision from CVM is
applied, the performance of CVM on the training set can be
accordingly improved (from 0.683 to 0.724 in Dice coeffi-
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cient). More notably, when the CVM utilizes the deep fea-
tures from the deep segmentation model trained in a fully-
supervised fashion, the corresponding Dice coefficient can
increase to 0.798. This observation indicates that the seg-
mentation performance of CVM relies on the quality of the
learned deep features, although it can still achieve promis-
ing performance on lower-quality deep features.

2. Extension to region annotation
As mentioned, point annotation is a special case of re-

gion or brushstroke annotation, but is usually faster. In fact,
region annotation can be obtained through expanding point
click in which an annotated region is centered at the anno-
tated point. The proposed method can be adapted for such
an extension, whereas only the CVM needs minor modifi-
cation. One possible solution is to use the mean value of
region features to compute the correlation. Random and
center selections of region features are another two alterna-
tives. To further evaluate, extra experiments on Camelyon-
16 have been conducted with ground-truths being expanded
from points to regions of various sizes (at output dimen-
sion,i.e.,256x256) and using center selection. Results in Ta-
ble.1 show that the region annotation has limited improve-
ment over the point annotation, probably because the tissue
within a small region has high morphological similarity, so
involving surrounding region labels introduces limited new
knowledge.

3. Correlation maps and contrast maps
Figure.2 presents examples of the correlation maps gen-

erated based on the pairs of annotated in-target and out-of-
target points, and the corresponding contrast maps. As can
be seen, except for target regions, there are still comparably
strong activations outside the target regions in the in-target
correlation maps (third column in Figure.2), which also ap-
pear in the same locations in the out-of-target correlation
maps. With the subtraction operation to generate the con-
trast maps, these undesired activations can be removed or
alleviated in the resulting contrast maps.
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Table 1. Dice coefficient values on Camelyon-16

label region size 1x1 (point) 3x3 5x5
Partial CE 0.563±0.032 0.571±0.058 0.590±0.086

Ours 0.735±0.027 0.736±0.038 0.740±0.035

Figure 2. The pair of annotated in-target (red dot) and out-of-target
(blue dot) points, and their correlation maps and the corresponding
contrast map. The contrast maps will have fewer false activations
than the correlation maps.

4. Numerical scheme
The non-linear partial differential equations (PDE) of the

main paper is solved using an Additive Operator Splitting
scheme (AOS). To do this, we rewrite the PDE as:
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where k = 0, ..., N denotes iterations. More information
can be found in [5].

5. Contrast maps vs CVM results
Figure.3 shows examples of the mean contrast map and

the CVM result, where a mean contrast map is defined as
the mean value of all contrast maps of an image w.r.t. the
annotated point pairs, i.e.,

∑
p zp

|P | . We can see that the mean
contrast maps can already present the rough shapes of the
target regions, yet they are not very regionally consistent
and have rugged boundaries. On the contrary, the CVM
results are highly consistent in regions and have smoother
boundaries. The phenomenon is also in accordance with
the performance results shown in Table.1 in the main paper,
where the proposed method, which utilizes CVM results
as the complementary supervision, outperforms the method
that uses the mean contrast maps as the complementary su-
pervision ( the ‘Supervised By Contrast Map’).

6. Comparisons with conventional variational
selective segmentation models

We also evaluate the proposed CVM with recent se-
lective variational segmentation methods on the training
sets, namely models composed of: Chan-Vese with Eu-
clidean distance (CVE) [4], Chan-Vese with geodesic dis-
tance (CVG) [2], reformulated Chan-Vese with geodesic
distance [3], and Mumford-Shah based with Euclidean dis-
tance [1] (MSE).



Table 2. Performance comparison with conventional variational methods on the training sets.

Camelyon16
Dice Coefficient Accuracy Cohen’s Kappa AUC

CVE [4] 0.158 ± 0.235 0.699 ± 0.256 0.115 ± 0.196 0.560 ± 0.102
CVG [2] 0.071 ± 0.111 0.610 ± 0.250 -0.004 ± 0.126 0.493 ± 0.076
RCVG [3] 0.681 ± 0.187 0.825 ± 0.193 0.575 ± 0.251 0.812 ± 0.112
MSE [1] 0.501 ± 0.247 0.597 ± 0.254 0.130 ± 0.248 0.594 ± 0.151
CVM 0.724 ± 0.017 0.896 ± 0.019 0.625 ± 0.042 0.923 ± 0.023

Colorectal tissue cores
Dice Coefficient Accuracy Cohen’s Kappa AUC

CVE [4] 0.315 ± 0.123 0.757 ± 0.125 0.218 ± 0.139 0.590 ± 0.056
CVG [2] 0.249 ± 0.112 0.734 ± 0.136 0.154 ± 0.141 0.564 ± 0.060
RCVG [3] 0.193 ± 0.136 0.693 ± 0.139 0.051 ± 0.092 0.524 ± 0.046
MSE [1] 0.426 ± 0.136 0.532 ± 0.279 0.100 ± 0.189 0.564 ± 0.060
CVM 0.680 ± 0.035 0.815 ± 0.047 0.557 ± 0.043 0.891 ± 0.016

Figure 3. Examples of contrast maps and the CVM results from Camelyon-16 (left) and from colorectal tissue cores (right).

In Table.2 detailed performance comparisons of the
CVM with the selective segmentation of variational meth-
ods are presented. Clearly, the proposed CVM outperforms
the traditional variational methods in all performance met-
rics. This is due to a number of reasons. The Chan-Vese
fidelity used in [2, 4] is insufficient to capture details in the

images used, and in all four of the competitors, the geomet-
ric constraints are not sophisticated enough to effectively
restrict the domain to the region of interest only. Qualita-
tive examples (heatmaps) are provided in Figure.5, which
show the proposed CVM can produce more regional con-
sistent segmentation results with smoother boundaries in



Figure 4. Heatmaps of different methods. Top: examples from the Camelyon-16; Bottom: examples of the colorectal tissue cores.



comparison to other conventional variational methods. No-
tably, RCVG [3] also achieves promising performances on
the Camelyon-16 datasets, and the corresponding qualita-
tive results also show its high segmentation capability, al-
though its performances on the colorectal tissue cores are
much more inferior to the proposed CVM.

7. More qualitative results

More qualitative results of heatmaps in addition to the
Figure.3 of the main paper are shown in Figure.4. As can
be seen, the dual branch method also presents promising
segmentation ability in the colorectal tissue core images, yet
it tends to shrink the segmentation.

8. Limitation

The time consumption is considerable for the solvers of
variational methods, as mentioned in the main paper, and at
present there is no GPU version solver to speed up the cal-
culation process. However, the calculation process of the
proposed CVM is conducted only during the training, and
the trained deep segmentation model can be used as a regu-
lar deep learning model in the inference period. In addition,
images in the training set can be processed by multiple CPU
cores in parallel, which substantially reduces the computa-
tional time for CVM.

As mentioned in Section.1, the segmentation perfor-
mance of CVM is related to the quality of the learned
deep features from the deep segmentation model, and the
CVM may fail in some cases if the corresponding learned
deep features are not relevant enough for rare cases. Fig-
ure.6 shows some failed examples of CVM. Particularly, in
some cases of colorectal tissue cores, some target regions
(stroma) have sparse tissue and light colors, being similar to
the white background, and the CVM model cannot well rec-
ognize them as the target regions. Besides, for some target
regions with very rugged boundaries, the CVM may gener-
ate segmentation results with over-smooth boundaries.

It is also notable that in the shown failed cases on the
Camelyon-16, some other conventional variational meth-
ods, especially RCVG, can still generate comparably good
segmentation results, which inspires us in future work to
incorporate the strengths of these conventional variational
methods into the proposed framework for better segmenta-
tion performance.

References

[1] Chunxiao Liu, Michael Kwok-Po Ng, and Tieyong Zeng.
Weighted variational model for selective image segmentation
with application to medical images. Pattern Recognition,
76:367–379, 2018. 2, 3

[2] Michael Roberts, Ke Chen, and Klaus L Irion. A convex
geodesic selective model for image segmentation. Journal of
Mathematical Imaging and Vision, 61(4):482–503, 2019. 2, 3

[3] Michael Roberts and Jack Spencer. Chan–vese reformulation
for selective image segmentation. Journal of Mathematical
Imaging and Vision, 61(8):1173–1196, 2019. 2, 3, 5

[4] Jack Spencer and Ke Chen. A convex and selective variational
model for image segmentation. Communications in Mathe-
matical Sciences, 13(6):1453–1472, 2015. 2, 3

[5] Joachim Weickert, BM Ter Haar Romeny, and Max A
Viergever. Efficient and reliable schemes for nonlinear dif-
fusion filtering. IEEE Transactions on Image Processing,
7(3):398–410, 1998. 2



Figure 5. Heatmaps of different variational selective segmentation models on the training sets.



Figure 6. Examples of failed cases of CVM.


