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Supplementary Contents
This supplement is organized as follows:
 Section A illustrates a comparison of synthetic versus real snow weather effects.
 Section B displays additional qualitative results on Internet images.
* Section C shows our pipeline algorithm.
* Section D provides details on the implementation of the pipeline and weather removal models.
* Section E shows intermediate samples from our pipeline.
* Section F shows a failure case of models trained on the WeatherStream Dataset.
* Section G shows some weather removal results of recent GAN models.

* Section H concludes with some closing remarks.

A. Visualization of Synthetic Snow Effects

Figure A compares synthetic snow pairs in Snow 100K [27] with time-multiplexed pairs in the WeatherStream Dataset.
Our dataset captures real snow weather effects with snowflakes and veiling in actual snow environments, while synthetic
snow pairs simply add synthetic flakes to images under clear, sunny, or even indoor conditions.

B. Additional Qualitative Results

In addition to Fig. 7, in the main paper, we show some more qualitative results on Internet images of different models
trained on a synthetic dataset [39] versus our final WeatherStream Dataset. Figure B compares the results from the Uformer
model [41]. Figure C compares the results from the Restormer model [57]. Figure D compares the results from the Tran-
sweather model [39]. Figure E compares the results from the Rain-robust model [3].

Models trained on the WeatherStream Dataset are able to preserve more high-frequency details. An example of this can be
seen in the second row of Fig. B, where the bike is noticeably sharper on the model trained on WeatherStream Dataset. They
are also able to remove more snowflakes, rain streaks, and veiling effects from images, while avoiding blurs such as those
found in the building in the third row of Fig. D. Certain more uniquely shaped rain streaks and snowflakes are more effectively
removed for models trained on the WeatherStream Dataset. Examples of this are shown in the second row of Fig. C, where
all flakes are removed by the model trained on the WeatherStream Dataset. Further examples of this are shown by the second
row of Fig. D, where the uniquely motion blurred snowflakes are not removed by the synthetically trained model, but are all
removed by the model trained on the WeatherStream Dataset. Models trained on the WeatherStream Dataset are also better
able to remove veiling effects from images. An example of this can be seen in the last row of Fig. C and Fig. D, where
buildings in the background exhibit higher contrast in the model trained on the WeatherStream Dataset.
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Figure A. WeatherStream Dataset is the first dataset to contain time-multiplexed snow pairs that have real snow effects. Existing
synthetic datasets such as those found in Snow100K [27] cannot model the complexity of real-world snow.

We note that the synthetically trained version of the Rain-robust model [3] is particularly bad at removing rain streaks and
snowflakes when compared to training on WeatherStream Dataset. In all rows of Fig. E, it can be seen that a majority of rain
streaks and snowflakes remain in the synthetically trained model. This is likely due to the model being designed for training
on real weather effect pairs rather than synthetic weather effect pairs.

C. Pipeline Algorithm

We provide in Algorithm 1 the algorithm used for our pipeline, written in pseudo-code, which references equations and
sections from the main paper.

Algorithm 1: WeatherStream Collection Pipeline
Input : A candidate set D, of clean frames and a candidate set Dg of frames capturing weather effects.
Output: A single good pair of clean and degraded frames (c, d).
for (¢", d™) pair in De, Da do
Obtain filter mask Bor based on Sec. 4, Filtering Block One;
Obtain filter mask Bg.ic based on Eq. 14;
Obtain filter mask By based on Sec. 4, Filtering Block One;
Obtain filter mask Bcprom var based on Sec. 4, Filtering Block Two;
Combine the filter masks B <— Bor U Bgaic U By U Berom_var 3
Crop the frames based on B: C {¢1,Cl, ..., Con } DI {aﬂ, dan, ..., &z;},
for (cz, El;”) pair in C*, D™ do
grad_check <— farad > 7Yeraa With Eq. 19;
fft_check < fix > 7 with Eq. 20;
Obtain illum_check based on Sec. 4, Filtering Block Four;
if grad_check and fft_check and illum_check then
| Set(c,d) = (&, d");
end if
end for
end for
return (c,d);
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Figure B. Additional qualitative results on Uformer [41].
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Figure C. Additional qualitative results on Restormer [57]. Models trained on WeatherStream Dataset are able to remove more
snowflakes than those trained on synthetic data.
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Figure D. Additional qualitative results on TransWeather [39]. Note the blurry building in the third row result for models trained on
synthetic data.
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Figure E. Qualitative results for the Rain-robust model [3] trained on sythetic data. The synthetically trained model is unable to
remove as many snowflakes and rain streaks.
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Figure F. The WeatherStream pipeline filters out inconsistent motion and lighting. Above images are intermediate outputs from the
pipeline after no filtering blocks, the second block, and the final block from left to right.

D. Additional Implementation Details

As an additional supplement to the main paper, we list here more implementation details for our pipeline and the weather
removal models included in the main paper.

D.a. Pipeline

The pipeline uses Gunnar-Farneback optical flow [ 2] with a window size of 25 pixels, and 3 pyramid levels with scale 0.5.
Our temporal averaging takes a mean over 15 images. For detecting static object discrepancies without the color verification,
we set Ysiic in Eq. 12 from the main paper to be a PSNR difference of 20dB, which translates to an absolute error of 0.1 for
images scaled between 0 and 1. For the FFT-based multi-scatter verification check, we set the center region of the image in
the Fourier domain to 0. For the illumination verification check, we use the Rain-robust model [3] as the seed model. This
model is trained on a seed dataset including GT-RAIN [3] and a manually collected snow dataset totaling 40K pairs. The
snow dataset includes time-multiplexed pairs collected through a similar procedure as GT-RAIN. Hysteresis [0] thresholds
for this verification are as follows. All PSNR values are with respect to the time-multiplexed ground truth. If the PSNR of
the restored image (using the seed model) is above 25dB, we pass the pair with no further checks. If an illumination shift is
present, either the input PSNR is extremely low, or there is no obvious improvement from passing the image through the seed
model, since the seed model is able to partially restore the background from veiling effects while leaving the illumination
largely unchanged. Therefore, if the PSNR of the restored image is between 20 and 25dB, we only pass the pair if the PSNR
increases by at least 2dB between restored and input. If the input PSNR is lower than 20dB, we reject the pair.

D.b. Weather Removal Models

All initial models are trained on the initial seed dataset of 40k pairs as described above. Final models are trained on the
entire WeatherStream Dataset. For synthetic models, we use the dataset given by Transweather [39], which includes 9000
synthetic snow and 10069 synthetic rain pairs. The Rain-robust model [3] is trained with a learning rate of 8e-4 and a batch
size of 8 on a single NVIDIA 3090 GPU. The Uformer model was trained with learning rate of 2e-4 and a batch size of
32 on 2 NVIDIA 3090 GPUs. The Restormer model was trained with learning rate 3e-4 and a batch size of 6 on a single
NVIDIA 3090 GPU. The Transweather model was trained with a learning rate of 2e-4 and a batch size of 32 on 4 NVIDIA
3080 GPUs. Links to the locations of the codebases used for these methods are found in Tab. A.

E. Intermediate Samples from the Pipeline

Fig. F shows intermediate outputs from certain stages of the pipeline. For example, with no background consistency
check, a train is clearly visible in the weathered image, while it is missing in the ground truth. Without an illumination or
blur check, clouds going over the sun can completely change the lighting of the scene between the weathered and ground
truth images. Samples taken from the output of our pipeline do not have any of these issues.



Methods Links

TransWeather [39] (CVPR’22) https://github.com/jeya-maria—jose/TransWeather

Restormer [57] (CVPR’22) https://github.com/swz30/Restormer
Uformer [41] (CVPR’22) https://github.com/ZhendongWang6/Uformer
Rain-robust [3] (ECCV’22) https://github.com/UCLA-VMG/GT-RAIN

Table A. Code links for the comparison methods.

F. Failure Case

We show in Fig. G a case in which some models trained on the WeatherStream Dataset are not able to remove some
specific snowflakes. While all models benefit from the larger dataset, certain snowflakes have unusual shapes that are not
commonly found in the collected dataset. Therefore, some models may not be able to remove all of these flakes. We expect
these results to improve as the dataset is further expanded in future work.

Snowy TransWeather [39] Restormer [57] Uformer [41] Rain-robust [3]

Figure G. Failure case. Performance is dependent on model architecture.

G. GAN Results

Method Rain Rain Fog Snow Overall

Input 21.38/0.7710 18.36/0.7542 20.70/0.7865 20.18/0.7699
DerainCycleGAN 21.89/0.7733 - - -

ZeroScatter 13.17/0.6024 13.70/0.6687 15.41/0.6975 13.99/0.6520

Ours Restormer  23.67/0.8027 22.90/0.8029 22.51/0.8279 23.08/0.8100

Table B. The Restormer model retrained on the WeatherStream dataset outperforms GAN-based methods such as DerainCycle-
GAN and ZeroScatter.

Input ZeroScatter Ours/Restormer Ground Truth

Figure H. Style translation methods such as ZeroScatter sometimes generate results that exhibit strong color shifts.

In Tab. B, we compare the Restormer model retrained on the WeatherStream dataset with popular GAN-based weather
removal methods such as ZeroScatter [35] and DerainCycleGAN [43]. Only the rain subset is run for DerainCycleGAN, as
it is only a deraining method, while ZeroScatter targets all scattering media. For both ZeroScatter and DerainCycleGAN,
we use the model weights provided by the authors. The table shows that retraining Restormer on the WeatherStream dataset
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achieves higher PSNR/SSIM metrics than ZeroScatter and DerainCycleGAN. Note that ZeroScatter exhibits particularly
lower results since it sometimes generates outputs with strong color shifts. This is likely due to style translation models’
dependence on training data. An example of this is shown in Fig. H.

H. Additional Remarks

WeatherStream is the first large scale time-multiplex dataset for training and evaluating all weather removal (deweathering)
models. This is, however, only the first step. While the current revision only supports the deweathering, we further look
towards addressing the problem of robust vision under adverse weather by providing additional labeling of the frames to
support recognition tasks. Nonetheless, deweathering models trained on WeatherStream are not only suited for appealing to
aesthetics via image restoration, but may also support the re-use of pretrained models for downstream vision tasks such as

depth completion [15,25,28,29,36,46-49,53,56], stereo [4,7,11,50,55], optical flow [1,20-22,37,38], object detection [ 16,
,26,33], segmentation [8—10,23,24,34,44,54] and monocular depth prediction [2,5,13,14,17,18,23,30-32,40,42,45,51,52].
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