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(a) Wide-angle image with distortions

(b) Rectified image byldr method

Figure S1. (a) An image captured by a wide-angle 149° field-of-view camera with different distortions (e.g. curved ceiling lines, and
skewed face). (b) The proposed method not only eliminates most noticeable distortions in the scene, but also keeps the wide field-of-view.

0. Overview

The supplementary material provides the implementa-
tion details of deep image content analysis, baselines (e.g.
content-aware methods proposed by Carroll et al. [2] and
Shih et al. [8]), and derivation of polar-form Cauchy-
Riemann condition. Additional experiments are also pre-
sented, which further demonstrates the superior perfor-
mance of the proposed method compared with all previous
methods, including global projections and content-aware
baselines.

1. Implement Details

We provide additional implementation details for deep
image content analysis in Sec. 4.1 of our submission. Be-
sides, we compare the proposed method to state-of-the-
art content-aware methods as well as image warping using
global projections. Here we provide additional implementa-
tion details regarding the baseline comparison methods de-
scribed in Sec. 5.1 of our submission.

1.1. Deep Image Content Analysis

We present tow components, including curvilinear line
perception network (CLP-Net) and boundary-aware salient
object detection network (BAS-Net), to detect the results of
image content analysis.

For network architecture of the CLP-Net, stacked hour-
glass network [6] is utilized to learn the segment map
h € RHXW of the curvilinear lines from the wide-angle
image whose size is H x W x 3. Three pyramid resid-
ual modules are used to extract the feature map with size
of % X % x 512 from the wide-angle image and then in-
put to five stacked hourglass modules. The feature map is
then upscaled by two deconvolution layers to get the feature
with size of H x W x 16. Finally, a convolution layer with
1 x 1 kernal size to predict the segment map h of curvilinear
lines. After the Batch-Normalization and ReLLU, the CLP-
Net outputs the predicted heat map, which is pixelwisely

defined,
= {5 w2l (sD)

where S(d) = (1 + e~ D))~ refers to a radial sigmoid
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Figure S2. Overview of the proposed method: (a) a wide-angle image with visual features (curved lines and prominent regions) as the
input; (b) optimizing mesh with polar parameterization by minimizing the energy function; (c) rectified results with conformality, where
most lines are corrected, local shapes and original wide field-of-view are preserved.

function, d is the distance from the line to the image center.
D is the half image diagonal distance. Considering the fact
that the distortion of linear structure is severe far away from
the image center, based on the radial sigmoid function, the
heat map implicitly contains the radial distortion strength
which aids the perception of curved lines farther away from
the image center. Besides, d(l) which is the length of a
distorted line attenuates perception of short lines and local
edges in the heat map. Let iL(u) be the perception heat map
value from the CLP-Net, the pixel-wise L2 loss function is
defined,

L= Hﬁ(u) . h(u)Hz. (S2)

Another crucial problem is the well-annotated distorted
lines under the distortion model of the wide-angle lens for
training. We adopt the wireframe dataset [3] which al-
ready marks the straight lines in perspective images. We
use the distortion parameters of different wide-angle lenses
to remap the perspective image to the distorted image. The
same process is performed on marked straight lines. The
heat map is then generated according to Eq. (S1) and dis-
torted lines. Considering the distorted line has complex ge-
ometry compared straight line, we randomly flip the per-
spective images in the horizontal or vertical direction to ex-
tend the scale of the training dataset, and each FoV corre-
sponds to one network for accuracy. In summary, we gen-
erate 10924 wide-angle images (10000 for training and 924
for testing) with distorted lines for each wide-angle lens.
The network is optimized with the Stochastic Gradient De-
scent (SGD) method on an NVIDIA 1080Ti. The learning
rate is set to 0.01. Convergence is reached at 200 epochs.

For BAS-Net, we directly use the pre-trained BAS model
provided by Qin et al. [7] to extract the salient weights w°®
of wide-angle images. Considering it worked very well on
wide-angle images, we did not fine-tune the network on dis-
torted images.

1.2. Spatially-varying Shape-preserving Weight

We compute the spatially-varying weight w%n for each

polar vertex, which is initialized as 1 (i.e., baseline weight).
Image content analysis allows us to adaptively minimize the
violation of conformality in places where it is most likely
to be noticed. Our spatially-varying weight includes three
parts: the baseline weight, the salient weight, and the curvi-
linear line endpoint weight.

Salient weights. We use BAS-Net to extract salient
weight and normalize them in range [0, 1] before adding
them to local weights to improve shape preservation in those
salient regions. Specially, we assign a salient weight wfﬁn
to each polar vertex, allowing us to change the strength of
shape-preserving and smoothness terms spatially and pre-
serve the local shape in locations where it is most notice-
able.

Curvilinear line endpoint weight. Considering the dis-
continuous nature between the line-preserving term and
shape-preserving term, extremely stretched areas might oc-
cur near the endpoints of the curvilinear line. We also add
weight wfl{’n to the vertices of the polar cell around the end-
points of curvilinear lines to minimize excessive distortion
and extreme straining. Given that this discontinuous dis-
tortion is severe far away from the center of the image, we
apply the radial sigmoid function to compute the endpoint
weight wPP = (1 + e=¢/(4D))=1 where d is the distance
from line segments on the polar cell to the image center, and
D is the half image diagonal distance.

We finally combine the baseline weight, the salient
weight, and the endpoint weight given to all polar vertices
to define the total spatially-varying weight w%n as,

Wiy =1+ 4wi?, + 2wiP . (S3)
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Figure S3. Image content analysis and rectification conformality. The first and fourth rows are wide-angle images with 149° diagonal FoV's
except for the second and fourth images in the first rows, whose diagonal FoVs are 117°. The second and fifth rows are visual features,
including the detected salient regions by BAS-Net (white) as well as curved line segments by CLP-Net (blue). After the optimization,
the third and sixth rows visualize the rectification conformality (i.e., measurement of the shape preservation). Areas with better shape
preservation are labeled with colder colors. It can be seen that, after optimization, the value of conformality is small, especially on the
salient regions. Besides, the value near the endpoint of curved lines is higher with the distance between the line and the image center.

1.3. Carroll’s Content-aware Method

This baseline proposed by Carroll ef al. [2] is represen-
tative of an optimized content-aware method that applies
local optimization to correct curved linear structures while

preserving the natural shape of objects. We implemented
this algorithm from the description provided in the original
paper based on Ceres solver [1] and C++, since no open-
source code is currently available. We first transfer the im-
age coordinates (u, v) of the raw input to longitude and lat-



itude coordinates under the Mercator projection, and then
establish the mesh grid based on longitude and latitude co-
ordinates. We then implement their energy terms includ-
ing conformality and smoothness with the same weights.
Note that, the preservation term on straight lines is different
from their original paper. We use the same line-preserving
term (Egs. (6) and (7) in our submission) provided in our
method without the fixed orientations or scales. The set-
ting of spatially-varying constraint weighting is the same as
their paper, where salience regions and facial regions are de-
tected by image content analysis and [5] respectively. We fi-
nally apply an LM optimizer to find an optimal mesh for im-
age rectification via Ceres solver. Consequently, the com-
parisons between Carroll’s method and our method demon-
strate that the proposed content-aware least-squares confor-
mal mapping in polar form outperforms Carroll’s local con-
straints.

1.4. Shih’s Content-aware Method

This baseline proposed by Shih et al. [8] is representative
of the content-aware method specifically addressing portrait
photos that rectify distortions on facial regions from a per-
spective image based on stereographic projection. Consid-
ering there is no open-source code released by [8], this al-
gorithm was also implemented via the description provided
in the original paper based on Ceres solver [1] and C++.
We first retrieve the facial regions using a person segmen-
tation. Since the subject mask segmentation [9] used in the
original paper [8] does not release the code, we use per-
spective projection to map the detected salient regions by
BAS-Net [7] as the subject mask segmentation. To concen-
trate the correction on faces and hair, we generate a face
mask by intersecting the subject mask with rectangular face
bounds returned from face detectors [5]. To include hair,
we empirically extend the box height by 2 times along the
top direction, and the width by half on both sides. Since
both the perspective and stereographic images are mapped
from the raw input based on the field-of-view (FoV) [4], so
do the focal length for each global projection, these focal
lengths (e.g. f, for perspective projection and f for stereo-
graphic projection) are used to establish stereographic mesh
(Eq.(2) in their original paper) and correct distorted facial
regions. We then implement the energy terms mentioned in
their original paper with the same parameter setting. We fi-
nally apply an LM optimizer to search for an optimal mesh
for image rectification via Ceres solver.

2. Additional Experiments

We demonstrate the results of the proposed method on a
number of examples. All the results are better to view on
the screen with zooming in.

(a) Ours (b) Ours w/o line preservation

Figure S4. Ablation study of the line-preserving term. (a) shows
the rectification of the proposed method. (b) shows the results
without the line-preserving term. We can see that, without the
line-preserving term, our rectification tends to look globally very
similar to the stereographic projections. It also demonstrates that
the proposed shape-preserving term preserves the natural shape
locally.

2.1. Image Content Analysis

Fig. S3 shows the image content analysis and conformal-
ity after optimization. Areas with better shape preservation
are labeled with colder colors. It can be seen that, after op-
timization, the value of conformality is small, especially on
the salient regions. It means the proposed method could lo-
cally preserve the natural shape, which demonstrates the ef-
fectiveness of the LSCM-based shape-preserving term. Be-
sides, the value near the endpoint of curved lines is higher
with the distance between the line and image center, which
is caused by the line-preserving term. It also explains the
reason for the weights setting in the line-preserving term
(see Sec. 4.2).

2.2. Ablation Study

To demonstrate the performance of the proposed method,
we conduct the ablation study of line-preserving, smooth-
ness and boundary-preserving terms.

Line Preserving. Fig. S4 qualitatively shows the abla-
tion study of our method with/without the line-preserving
term. We can see that, without the line-preserving term, our
rectification tends to look globally very similar to the stere-
ographic projections, which certifies the performance of the
LSCM-based formulation on shape preservation. With the
introduction of the line-preserving term, the curved lines
become straight, while at the same time the local shape is
preserved.
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(a) Ours (b) Ours w/o smoothness

Figure S5. Ablation study of smoothness term. (a) shows the rec-
tification of the proposed method. (b) shows the results without
smoothness term. It demonstrates the superior performance of our
method for smoothing the local shape preservation and global lin-
ear structure on the image plane.

(a) Ours (b) Ours w/o boundary preservation

Figure S6. Ablation study of the boundary-preserving term. Red
rectangles indicate the cropping frames. It can be seen that, com-
pared with ignoring the boundary-preserving term, our method re-
tains the original wide and rectangular field of view.

Smoothness. Fig. S5 qualitatively illustrates the results of
our method with/without the smoothness term. We can see
that Fig. S5(a) preserve both local shape and global lines,
while Fig. S5(b) causes the “seams’ between the neighbor-
ing transformations, especially on visual features. It certi-
fies the effectiveness of the proposed smoothness term.

Boundary Preserving. Fig. S6 qualitatively shows the
ablation study of our method with/without the boundary-
preserving term. It can be seen that, compared with ignoring
the boundary-preserving term, our method retains the orig-
inal wide and rectangular field of view, which demonstrates
the effectiveness of the proposed boundary-preserving term.

In summary, our method strikes an excellent balance be-
tween local shape-preserving (e.g. faces) and global linear-
structure-preserving (e.g. “straight lines must be straight”),
making the rectified images look both real, natural, and vi-
sually pleasing, while at the same time enjoying the immer-
sive wide-angle visual experience by retaining the original
wide field of view.

2.3. Comparisons of Conformal Mappings

To demonstrate the benefits of our polar-form LSCM, we
also perform our method without the boundary-preserving
term compared with Carroll’s method [2], as shown in Fig.
S7. Tt could be considered as the ablation study of con-
formal mapping in polar and Cartesian domains. Specif-
ically, Carroll’s approach stretches the scene heavily near
the poles, even destroying the line preservation. For exam-
ple, the linear structure of the building of the third scene in
Fig. S7 become crooked. The reason for this phenomenon
is that the conformal map based on Mercator projection is
an axisymmetric projection. Interestingly, it also results in
the deflection of the orientation of local objects in Carroll’s
method, such as the portraits and window frames in Fig. S7.
That is why the original Carroll’s method requires manually
fixing some lines’ orientation and adds the line-orientation
constraints. In contrast, our results are free from those resid-
ual distortions automatically, giving rise to natural looking
and pleasing images. Since camera distortions are consen-
sus to be radial symmetry, polar coordinates are indeed a
better fit for parameterizing them, as verified by compar-
isons above.

2.4. Qualitative Evaluation in Details

To further validate the performance of the proposed
method, we compare our method to two baselines in detail.
Figs. S8 and S9 illustrate the results by our method and the
state-of-the-art content-aware methods provided by Carroll
et al. [2] and Shih et al. [8]. We show some details in red
boxes with zooming in for better view.

In particular, Carroll’s method modifies the ceiling orien-
tation, such as the window frame in the first image of Fig.
S8. Besides, Carroll’s method suffers the severe loss of im-
age contents, especially at the boundaries. Shih’s method
performs well with smaller FoVs (e.g., the third and fourth
images of Fig. S8) but fails with increasing FoVs, such as
the shoulder of the girl in the first scene of Fig. S8. In addi-
tion, Shih’s method is a content-aware method that handles
explicitly the facial regions in portrait photos, which leads
the disharmony between portraits and other places (e.g. the
big head with cube and small body in the third scene. As
shown in the second scene of Fig. S9, the face of the girl
corrects very well, but the cube is stretched. Finally, in
Shih’s results, the linear structure of an edge can not be
preserved when it is very close to face regions, as shown
in the first scene of Fig. S9. Compared with them, our
method achieves superior results that preserve both global
linear structure and local natural shape.

2.5. Comparison with Baseline

Fig. S12 provides the comparisons against global projec-
tions (e.g. Mercator, perspective, stereographic projections)
as well as content-aware methods proposed by Carroll et
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Figure S7. The comparison between our method without boundary-preserving term and the method proposed by Carroll ez al. [2]. It
shows the differences of conformal mappings in the polar domain (our method) and Cartesian domain (Carroll’s method). Considering the
conformal mapping derived from axisymmetry Cartesian coordinates and Mercator projection, Carroll’s method stretches the boundaries
near the poles, destroys the linear structure, and alters the shape-orientations. In contrast, our method preserves all these parts very well,

which demonstrates the benefits of our polar-form LSCM constraint.

al. [2] and Shih et al. [8]) without cropping. We can see
that others suffer severe loss of image contents especially
at the peripheral, but our method preserves a nearly perfect
rectangular field of view. Specifically, Carroll’s method [2]
stretches the scene at the pole, while image boundary lines
become crooked. The perspective projection only keeps the
central part of a wide FoV, and this is the case for Shih’s
method [8].

Fig. S13 shows manually cropped results of our recti-
fication. We compare them to three global projections and
other content-aware baseline methods [2] and [8]. Global
projections, while being able to reduce certain types of dis-
tortions, often leave other residual distortions. In particular,
The perspective projection shows severe stretching here, so
does Shih’s method, which uses perspective images as in-
puts to correct facial regions only. The Mercator and stere-
ographic results both bend lines. Carroll’s results look glob-
ally similar to the Mercator projection, but the lines are
straight. However, as shown in Figs. S12 and S13, Car-
roll’s results miss border contents and stretch the lines near
the boundaries. Compared with them, our method achieves
a decent balance between distortion-minimization and FoV-
retaining.

Figs. S14 and S15 demonstrate the rectification re-
sults under perspective projection, our method and Carroll’s

method [2]. Neither perspective projection nor Carroll’s
method could preserve the boundary. Since the perspective
projection is not conformal and leads to perspective dis-
tortion, objects near the periphery of wide-angle perspec-
tive images can appear unnaturally stretched and distorted.
While both our method and Carroll’s method successfully
preserve most of the straight lines and local shapes, Car-
roll’s approach fails to keep the orientations of linear struc-
ture and distorts near the boundaries, such as top boundary
in the fifth scene of Fig. S14 and the pipes in the third scene
of Fig. S15.

Fig. S15 also shows fisheye rectification examples of the
dataset released by Carroll et al. [2] (first and second rows).
It is worth noting that the only difference between our and
Carroll’s methods in Figs. S15 is the shape-preservation.
Both methods use the same lines, line-preservation and
without boundary-preservation. It is interesting to see that
Carroll’s method modifies the ceiling orientation. In con-
trast, our results are free from those residual distortions, giv-
ing rise to natural looking and pleasing images. Note that
the results in Fig. S15 are different with rectifications in [2]
due to the different inputs of marked lines, as described in
Sec. 1.3. Perspective projection exhibits severe stretch-
ing, as perspective stretches to infinity for a 180° FoV. In
contrast, our results are free from those residual distortions,
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Figure S8. The wide-angle input images (a) at the top, which may be more easily viewed by zooming in. The rectification results (d) of
our method are compared with state-of-the-art content-aware methods proposed by Carroll et al. [2] (b) and Shih er al. [8] (c). Compared
with them, our method achieves superior results that preserve both global linear structure and local natural shape.

giving rise to natural looking and pleasing images.

In summary, our method has effectively removed the
wide-angle distortions while at the same time maintaining
an ultra-wide field of view, without sacrificing salient image
contents.

2.6. Failure Cases

As mentioned in Sec. 6 of the submission, our method
does not always compute a satisfactory result. We found
two typical scenarios for which the result is often less than

we desired.

1) The visual quality of the rectified images is influenced by
image content analysis, especially the curved line detection.
Fig. S11 shows a failure case that a curved line is separated
into two curved line segments (e.g. 18-th line segment and
19-th line segment labeled in Fig. S11(a)) due to the bound-
ary or occlusions. The local shape of objects (e.g. the girl)
could be preserved, but the global structure of the window
frame is broken.

2) There is a trade-off between shape-preserving and line-
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Figure S9. Comparison in detail. (a) shows the input of the proposed method, including the wide-angle image and visual features of
image content analysis. (b-d) show the rectification results of Carroll’s, Shih’s and our methods. Compared with state-of-the-art methods,
our method has effectively removed the wide-angle distortions while at the same time maintaining an ultra-wide field of view, without
sacrificing salient image contents.

bending. When a curved line cuts across one local shape applied to line-preserving energy is heavier, as shown in
(e.g. face), the shape will be stretched, because the weight Fig. S10. For example, the faces of the boy and girl are



(a) Input

(b) Ours (c) Ours w/o line-preserving term

Figure S10. A failure case of the trade-off between shape-preserving and line-bending. (a) shows the wide-angle input image with detected
curved lines (blue). (b) shows the rectification of our method where the faces are stretched because of the correction of the curved lines. In

contrast, (c) shows the results without the line-preserving term. It can be seen that the facial regions could be locally preserved.

(a) Input (b) Ours

Figure S11. A failure case belong to the same curved line.

stretched because of the correction of the first curved line
segment. In contrast, we also demonstrate the optimized re-
sult without the line-preserving term. It can be seen that the
facial regions could be locally preserved.

3. Derivation of Eq. (3)

Formally, the polar transform between the polar domain
and Cartesian domain (image space (u,v)) is defined in
complex form:

U =u+iv=p(d)cos ¢+ ip(f)sin ¢, (S4)

where p(f) and ¢ indicate the radial and angular coordi-
nates, 6 is the angle between the principal axis and the in-
coming ray for specialization of radially symmetry projec-
tions. X = 6+ 1i¢ is the complex form of polar coordinates.
According to [4], the stereographic projection of a wide-
angle lens can be described by the following formula,

p(60) = 2f tan (g) . (S5)

Substituting Eq. (S5) into (S4), we obtain the polar trans-
formation under stereographic projection,

U =2ftan (g) cos ¢ +i2f tan (g) sin ¢. (S6)

Based on the Cauchy-Riemann condition, the partial equa-
tions of polar transformation are then derived,

au
a6

1 1
=f——Fgcosp+if 5 sin ¢ (S7)
cos? 3 cos? 3

ou

% :—2ftangsin¢+i2ftangcos¢
2511130052

2sin £ cos
29 n¢+zf#
0s2 o

os¢ (S8)
6L{

—i2sin Q b ou

=12 si COS 290
Considering sin # =2sin 5 2 cos , according to Egs. (S7)
and (S8), we finally obtain the polar-form Cauchy-Riemann

condition:
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Figure S12. Uncropped comparisons. FoV of each input is 149°. Red rectangles indicate the cropping frames. It can be seen that our
method retains the original wide and rectangular field of view. Carroll’s results [2] stretch the scene at the pole, while image boundary
lines become crooked. The perspective projection only keeps the central part of a wide FoV, and this is the case for Shih’s results [&].
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Figure S13. Cropped results of our rectification with global projection methods and local methods, by Carroll et al. [2] and Shih et al. [8].
FoVs of each input are 149°, 123°, 117°. Our method achieves a decent balance between distortion-minimization and FoV-retaining.
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Figure S14. Uncropped rectification results of our method compared with perspective projection and Carroll’s method [2]. FoV of each
input is 149°. We can see that others suffer severe loss of image contents especially at the peripheral, but our method preserves a nearly
perfect rectangular field of view. Carroll’s results [2] stretch the scene at the pole, while image boundary lines become crooked. The
perspective projection only keeps the local shape near the image center. Compared with them, our method has effectively preserve both
local shape and linear structure while at the same time maintaining an ultra-wide field of view.
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Figure S15. Cropped rectification results of our method compared with perspective projection and Carroll’s method [2]. FoVs of inputs
are 180°, 180°, 149°, 149°, and 117° . We can see that others suffer severe loss of image contents especially at the peripheral, but our
method preserves a nearly perfect rectangular field of view. Carroll’s results [2] stretch the scene at the pole. The perspective projection
only keeps the local shape near the image center. It is also noting that the Carroll’s results are different from that of his paper. The main
reason is that the distorted lines detected by CLP-Net are different from manually marked lines in his paper. In addition, according to Sec.
1.3, the line-preservation term of Carroll’s method is different from our implemented code, wherein the orientation term is ignored.
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